Контрольная работа по "Материаловедение"

Автор работы: Пользователь скрыл имя, 16 Марта 2015 в 07:28, контрольная работа

Описание работы

Вопрос 1. Виды образцов для исследования макро- и микроструктуры и способы их получения.
Макроструктура - это строение металла или сплава, видимое невооруженным глазом или при небольшом увеличении (30 - 40раз). С помощью анализа макроструктуры в металле обнаруживают крупные неметаллические включения, пористость, усадочные раковины, трещины, выявляют направление волокон после обработки металла давлением.

Содержание работы

Вопрос 1…………………………………………………………………………..3
Вопрос 2…………………………………………………………………………..4
Вопрос 3…………………………………………………………………………..4
Вопрос 4…………………………………………………………………………..6
Вопрос 5………………………………………………………………………….10
Вопрос 6………………………………………………………………………….12
Вопрос 7………………………………………………………………………….12
Вопрос 8………………………………………………………………………….15
Вопрос 9………………………………………………………………………….16
Список использованных источников………………

Файлы: 1 файл

10 вар.docx

— 329.83 Кб (Скачать файл)

Содержание

Вопрос 1…………………………………………………………………………..3

Вопрос 2…………………………………………………………………………..4

Вопрос 3…………………………………………………………………………..4

Вопрос 4…………………………………………………………………………..6

Вопрос 5………………………………………………………………………….10

Вопрос 6………………………………………………………………………….12

Вопрос 7………………………………………………………………………….12

Вопрос 8………………………………………………………………………….15

Вопрос 9………………………………………………………………………….16

Список использованных источников…………………………………………19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вопрос 1. Виды образцов для исследования макро- и микроструктуры и способы их получения.

Макроструктура - это строение металла или сплава, видимое невооруженным глазом или при небольшом увеличении (30 - 40раз). С помощью анализа макроструктуры в металле обнаруживают крупные неметаллические включения, пористость, усадочные раковины, трещины, выявляют направление волокон после обработки металла давлением.

Микроструктура - это строение металла или сплава, видимое при больших увеличениях с помощью микроскопа. С помощью анализа микроструктуры определяют величину и расположение зерен металла, размеры и количество мелких неметаллических включений и различных фаз в металле, контролируют состояние структуры поверхностного слоя изделия, выявляют микродефекты (мелкие трещины, раковины и т. д.).

Установлено, что структура металла является одним из основных факторов, определяющих свойства металлических изделий. С помощью макро- и микроанализа металла заготовок и изделий своевременно выявляют дефекты металла, которые могут понизить эксплуатационные свойства и надежность изделий в работе. Поэтому контроль структуры производят на всех этапах изготовления изделий: от выплавки металла до термической обработки готовых деталей.

Изучение структуры металла проводят на специально подготовленных плоских и гладких поверхностях - шлифах. Приготовление шлифа заключается в шлифовке и последующей полировке металла. Полировку металла проводят двумя способами: механическим (на абразивных материалах) и электролитическим (с помощью растворения в специальном реактиве под действием электрического тока).

Для выявления структуры металла существуют различные способы. Чаще всего применяют химическое травление. При этом способе на поверхность шлифа воздействуют специальным реактивом (в зависимости от цели исследования), который выявляет границы зерен, различные фазы, неметаллические включения, поверхностные, слои, поры, трещины и прочие детали строения металла.

Вопрос 2. Механические смеси – условия образования и свойства.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения. Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рисунок 1). В сплавах сохраняются кристаллические решетки компонентов.

Рисунок 1 — Микроструктура механической смеси

Вопрос 3. Кривая деформации металлов.

Деформацией называют процесс изменения формы и размеров тела под действием приложенных к нему нагрузок. Различают деформацию упругую (обратимую) и пластическую (остаточную). Упругой называют такую, при которой после снятия нагрузок тело восстанавливает свою первоначальную форму. Эта деформация сопровождается изменением расстояний между атомами в кристаллической решетке в пределах ее параметра. Пластической деформацией называют такую, при которой после снятия внешней нагрузки тело не восстанавливает первоначальную геометрическую форму и размеры. Деформация сопровождается смещением одной части кристалла по отношению к другой на расстоянии, значительно превышающем расстояние между атомами в кристаллической решетке. Пластической деформации всегда предшествует упругая деформация. Таким образом, общая пластическая деформация в момент действия нагрузки всегда состоит из упругой и пластической деформации. Упругая деформация после снятия нагрузки исчезает. Деформация имеет важное практическое значение поскольку процессы обработки металлов давлением основаны на деформации заготовок. Деформация сопровождается не только изменением формы и размеров тела. Одновременно с этим в металле появляется внутреннее напряжение и происходит изменение его механических и физико-химических свойств. Величина и характер деформации зависят от пластических свойств металла. Пластичность металлов примерно может быть оценена относительным удлинением и относительным сужением при испытании образцов на растяжение. К характеристикам пластичности металлов относится также ударная вязкость, показывающая работу разрушения при изгибании надрезанного образца, отнесенную к его площади сечения в месте надреза. Представление о упругих и пластических свойствах различных металлов дают диаграммы условной (рис. 2, а) и действительных напряжений и деформаций (рис. 2, б). Диаграммы условных и действительных напряжений и деформаций обычно строятся на основании данных, полученных при испытании изразцов на растяжение. В диаграммах условного напряжения по оси ординат откладывается условное напряжение, по оси абсцисс относительное удлинение (рис. 2, а). Условное напряжение определяется отношением усилия, действующего в данный момент, к первоначальной площади поперечного сечения образца.

Рисунок 2 Схематическая диаграмма растяжений

По диаграмме условного напряжения можно определить границу пропорциональности, предел текучести (физический и условный) и временное сопротивление разрыву. Широкое распространение получили диаграммы действительного напряжения в координатах. Настоящее напряжение S - относительное сужение площади поперечного сечения образца (рис. 2, б). Настоящее напряжение S является усилиями, отнесенными к площади поперечного сечения образца в данный момент испытания. На диаграмме действительного напряжения точка Sв характеризует напряжение, соответствующее началу образования шейки, а точка Sk - напряжение в момент разрыва. Касательная к кривой в точке Sв отсекает на оси ординат отрезок, близкий по величине временному сопротивлению разрыву, т.е. S0 = 6в Действительная деформация выражается относительным сужением или относительным удлинением, выраженным через относительное сужение. Кривая на диаграмме действительного напряжения (рис. 2, б) характеризует способность материала сопротивляться пластической деформации растяжением. Кривые действительного напряжения часто называют кривыми укрепления, поскольку действительное напряжение является пределом текучести материала, которое получает при укреплении при растяжении. При обработке давлением пользуются в основном диаграммой действительного напряжения, поскольку она точнее отражает действительные свойства металлов.

Вопрос 4. Общие принципы построения диаграммы состояния.

Диаграмма состояния показывает изменение состояния в зависимости от температуры и концентрации. Если в системе два компонента, то диаграмму строят в двух измерениях: температура – концентрация. По оси ординат откладывают температуру, по оси абсцисс – концентрацию. Общее содержание обоих компонентов в сплаве равно 100 %, и каждая точка на оси абсцисс соответствует определенному содержанию каждого компонента.

Каждая точка на диаграмме состояния показывает состояние сплава данной концентрации при данной температуре. Каждая вертикаль соответствует изменению температуры определенного сплава. Изменение фазового состояния сплава отмечается на диаграмме точкой. Линии, соединяющие точки аналогичных превращений, разграничивают на диаграмме области аналогичных фазовых состояний.

Вид диаграммы состояния зависит от того, как реагируют оба компонента друг с другом в твердом и жидком состояниях.

Рассмотрим построение ДС на примере сплава из 2-х взаимнонерастворимых в твердом состоянии компонентов, химически не взаимодействующих, но неограниченно растворимых в жидком состоянии. Таким примером может служить система Pb-Sb. Строим кривые охлаждения для ряда сплавов:

 

 

 

Кривая а) относится к чистому Рв. Выше 3270С Рв находится в жидком состоянии. При постоянной температуре (3270С) происходит кристаллизация Pb и ниже 3270С он находится в кристаллическом состоянии, т.е. отрезок 0-1 соответствует охлаждению жидкости, 11′ - кристаллизации, 1′-2 – охлаждению твердого свинца. Кривая б) относится к сплаву с содержанием 95% Pb и 5% Sb. Кристаллизация начинается при температуре ниже 3270С (3000С) и протекает при переменной температуре (от т.1 до 2), а затем оставшаяся жидкость кристаллизуетсяпри постоянной температуре (2-2′) 2460С.

Так как на участке 1-2 кривой кристаллизации из жидкости непрерывно выделяется Рв, жидкость обогащается сурьмой (от 5% до 13% в т.2). Точка 1, соответствующая началу кристаллизации, называется точкой ликвидус, т.2′ - отвечающая концу кристаллизации – точкой солидус.

Кристаллизация следующего сплава (в) будет поисходить так же, как и у предыдущего, но начнется при более низкой температуре 2600С. Совместная кристаллизация Pb и Sb у этого сплава начнется при той же температуре (2460С), что и у предыдущего (2-2′) и концентрация жидкости к началу совместной кристаллизации будет такая же (13% Sb и 87%Pb).

Если взять сплав, соответствующий этому соотношению (13% Sb и 87%Pb), то у него из жидкости при постоянной температуре 2460С одновременно выделяются оба вида кристаллов без предварительной кристаллизации Рв (г).

При содержании в сплаве Sb более 13%, предварительно будет выделяться Sb (д) и сплав по мере ее выделения обогатится свинцом. Когда он в процессе кристаллизации охладится до 2460С, жидкость будет содержать снова 13% Sb и начнется совместная кристаллизация обоих компонентов при постоянной температуре.

Для рассмотренных 4-х сплавов, а также для чистых компонентов температуры начала и конца кристаллизации будут находиться в таких пределах (0С):

Для построения ДС необходимо по оси ординат откладывать полученные температуры, а по оси абсцисс – концентрации. Полученные точки ликвидус соединить одной линией, а точки солидус – другой.

Геометрическое место точек ликвидус образует линию ликвидус (liquidus - жидкость), а геометрическое место точек солидус – линию солидус.

 

 

 

 

Очевидно, что выше линии ликвидус (АВС) сплав находится в жидком состонии, а ниже линии солидус (ДВЕ) – в твердом. У сплавов, содержащих менее 13% Sb, сначала выделится Рв. Следовательно, в области между линией ликвидус и солидус имеем жидкую фазу + кристаллы Рв. Аналогично у сплавов с содержанием Sb более 13% между линиями ликвидус и солидус имеем жидкость + кристаллы Sb.

Таким образом, диаграмма показывает состояние сплава данной системы при любом соотношении компонентов и любой температуре.

Во всех случаях построения диаграммы состояния предполагается, что в жидком состоянии растворимость компонентов неограниченная, т.е. жидкая фаза однородна (далее будет обозначаться L) при любом соотношении компонентов. (Сплавы с ограниченной растворимостью в жидком состоянии в технике применяюятся мало).

Вопрос 5. Диаграмма состояния «железо – цемент».

Диаграмма состояния "железо – цементит" дает представление о структуре медленноохлажденных железоуглеродистых сплавов и является теоретической основой термической обработки этих сплавов. Компонентами являются железо и углерод. Фазами на диаграмме являются: железоуглеродистый расплав (ж), аустенит (А), феррит (Ф) и цементит (Ц).

Рассмотрим превращения с 3,4 % углерода.

В точке 1 из расплава начинает кристаллизоваться аустенит, процесс заканчивается в точке 2 (при 1147 0С). В интервале температур между точками 2 и 3 из образуется эвтектика – ледебурит, состоящий из смеси кристаллов аустенита и цементита. По мере охлаждения растворимость углерода в аустените уменьшается, при этом из аустенита выделяется цементит.

При температуре ниже 727 0С аустенит переходит в перлит, и ледебурит состоит из перлита и цементита.

Строим кривую охлаждения сплава (рисунок 3).

Определим для сплава при содержании 3,4 % С и температуре t = 1050 0С количество, состав фаз и их процентное соотношение.

Этим данным соответствует точка с на диаграмме (рисунок 4). В этой точке присутствуют кристаллы аустенита и цементита, химический состав которых описывается точкой b (4,3 % С) и эвтектика – ледебурит, химический состав которой описывается точкой а (2,14 % С).

Рисунок 3 – Кривая охлаждения

Составляем и решаем пропорцию:

; ; 60 %;

QЛ = 40 %.

Вопрос 6. Основные параметры термической обработки.

Режим термической обработки характеризуют следующие основные параметры: температура нагрева tmax, т. е. максимальная температура, до которой был нагрет сплав при термической обработке; время выдержки сплава при температуре нагрева τв; скорость нагрева vнагр и скорость охлаждения vохл.

Если нагрев (или охлаждение) происходит с постоянной скоростью, то в координатах температура - время процесс характеризуется прямой линией с определенным, постоянным углом наклона.

При неравномерной скорости нагрева (или охлаждения) процесс характеризуется кривой и истинная скорость должна быть отнесена к данной температуре, вернее к бесконечно малому изменению температуры и времени, т. е. является первой производной от температуры по времени: vист = dt/dτ.

Вопрос 7. Углеродистые стали: классификация, свойства, маркировка, область применения. 

В зависимости от назначения стали делят на:

конструкционные (детали машин, механизмов и различных конструкций, болты, гайки, мосты, краны);

инструментальные стали (режущий инструмент, мерительный инструмент, штампы).

По структуре:

- доэвтектоидные;

- эвтектоидные;

- заэвтектоидные.

Информация о работе Контрольная работа по "Материаловедение"