Использование аэрокосмических методов в геологии

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 14:59, реферат

Описание работы

Аэрокосмические методы исследования с момента их появления в геологии всегда были и будут актуальны, особенно для России с её просторами, огромными расстояниями, неразвитой инфраструктурой. Необходимо также отметить, что площади известных горнорудных районов в геологическом отношении довольно хорошо изучены и обследованы. Поэтому здесь можно рассчитывать, главным образом, на выявление скрытых рудных объектов (глубоко залегающих и/или перекрытых рыхлыми отложениями).

Содержание работы

Введение 3
Глава 1. Исторический очерк 4
1.1. С чего начиналось применение аэрофотосъёмки в геологии 4
1.2. ДЗЗ 6
1.3. ГИС 8
Глава 2. Объекты изучения, цели и задачи аэрокосмических методов 10
Глава 3. Физические основы дистанционных исследований Глава 4. Современные средства исследований 18
4.1. Российская космическая система ДЗЗ 18
4.2. Цифровые системы съёмки 23
Глава 5. Связи с другими научными дисциплинами Заключение 29
Словарь основных терминов 30
Список использованной литературы 33

Файлы: 1 файл

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ В ГЕОЛОГИИ.doc

— 817.00 Кб (Скачать файл)

Биолого-Географический Факультет

Кафедра Географии

 

 

 

 

 

 

 

 

Реферативная работа

 

« ИСПОЛЬЗОВАНИЕ  АЭРОКОСМИЧЕСКИХ МЕТОДОВ В ГЕОЛОГИИ»

 

 

 

 

 

 

 

 

                                             

Выполнила: студентка 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ:

 

                                          

Введение            3

Глава 1. Исторический очерк         4

1.1. С чего начиналось применение аэрофотосъёмки  в геологии   4

1.2. ДЗЗ            6

1.3. ГИС           8

Глава 2. Объекты изучения, цели и  задачи аэрокосмических методов             10                                                                       

Глава 3. Физические основы дистанционных исследований                              Глава 4. Современные средства исследований                18

4.1. Российская космическая система ДЗЗ                           18

4.2. Цифровые системы съёмки                            23

Глава 5. Связи с другими научными дисциплинами              Заключение                                29

Словарь основных терминов                  30

Список использованной литературы                        33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Аэрокосмические методы исследования с момента их появления в геологии всегда были и будут актуальны, особенно для России с её просторами, огромными расстояниями, неразвитой инфраструктурой.

Необходимо также отметить, что площади известных горнорудных районов в геологическом отношении довольно хорошо изучены и обследованы. Поэтому здесь можно рассчитывать, главным образом, на выявление скрытых рудных объектов (глубоко залегающих и/или перекрытых рыхлыми отложениями). Это требует перехода на новые технологии прогноза и поиска месторождений, которые позволяют на начальном этапе в короткие сроки при минимальных затратах средств значительно сократить размер перспективных площадей для постановки детальных глубинных поисковых работ. И здесь на первый план также выходят дистанционные методы геологических исследований.

Особо важным обстоятельством является то, что космические съемки (КС) являются высоко экологичными. При их выполнении не нарушается целостность и не происходит загрязнения исследуемых территорий.

Очевидным преимуществом данных КС является: - объективность и метричность  исходной информации; - обзорность, непрерывность, наглядность и требуемая детальность; - использование цифровых средств получения информации и обработка данных в среде геоинформационных систем; - естественная генерализация и повышенная глубинность; - высокая информативность, обусловленная возможностью получения данных в широком диапазоне спектра электромагнитного излучения. А относительно низкая стоимость, позволяет сократить сроки и повысить результативность геологоразведочных работ.

Приступая к работе, я  наметила для себя следующие задачи: ознакомиться с исторической стороной вопроса, изучить и рассмотреть методы дистанционного исследования Земли, узнать с помощью каких приборов и каким образом происходят эти исследования. Понять как и для каких геологических задач  применяют аэрокосмические методы исследования в геологии. Обобщить найденную информацию и усвоить полученные знания, и применить их в последующем изучении дисциплин, читающихся на кафедре общей и региональной геологии.

 

1. ИСТОРИЧЕСКИЙ ОЧЕРК

1.1 С чего начиналось применение аэрофотосъёмки  в геологии

Во Франции в 1855 году с воздушного шара были сделаны первые фотографии с воздуха, для составления плана Парижа. Потом в 1860-х годах французский геолог Эме Цивиаль фотографировал Альпы с высоких вершин, и на фотографиях выделял геологические границы, т.е. он впервые применил фотографирование  земной поверхности с геологическими целями.

С этого момента использование  фотографий с геологическими целями начало набирать обороты. Особенно ускорился  прогресс развития аэросъёмки с появлением авиации. Под аэрофотосъёмкой или воздушным фотографированием понимают фотографирование земной поверхности с воздухоплавательных и летательных аппаратов.

В начале аэрофотосъёмку использовали для составления карт, планов, для  помощи в строительстве мостов, плотин, дамб, авто и железнодорожных дорог, в помощь людям для исследования новых территорий.

Инициатором внедрения аэрометодов в геологические и географические исследования в Советском Союзе следует считать академика Ферсмана А.Е., который ещё в 1927 году, выступая в печати, придавал огромное значение роли самолёта  при географических исследованиях. С 1931 года создаются различные научные и производственные организации, специализирующиеся на изучении и применении результатов аэрофотосъемок в проведении различных геологических работ. Разрабатываются методические пособия и рекомендации, издаются монографии, учебники и справочники в которых обобщен опыт использования аэросъемочных работ для решения задач прикладной геологии.

В 1950-е годы  наряду с общим  развитием отдельных видов аэрометодов, применяемых в геологии, наблюдается  и их значительная обособленность. В совершенно самостоятельный вид выделились аэрогеофизические работы, среди которых основное место принадлежит аэромагнитной и аэрорадиометрической съёмкам.

Под редакцией Еремина В.К в 1971 г. лабораторией аэрометодов, было издано методическое пособие по применению аэрометодов при геологических исследованиях.

В настоящее время аэрометоды вошли  составной частью во все виды  геологических исследований. Они  в обязательном порядке используются при производстве геологосъемочных и поисковых работ всех масштабов, а также при изучении тектоники и неотектоники, структур рудных полей, гидрогеологических и инженерно-геологических изысканиях, изучении геологического строения мелководных водоемов, участков шельфа и т.д.

Однако, для решения ряда геологических задач даже высотные аэроснимки, полученные с высот свыше 20 км и имеющие масштаб  около 1:100 000 оказались  малоинформативными.

В геологии в настоящее время  используются результаты различных  видов съемок. Основными из них являются фотографическая, телевизионная, радиолокационная, инфракрасная (тепловая), сканерная, лазерная.

По материалам аэрофотосъёмки составляют геоморфологические, геологические, тектонические и инженерно-геологические карты и планы участков строительства многих крупных гидроузлов.

 

 

 

 

 

 

 

1.2. ДЗЗ

Хотелось бы остановиться на термине «дистанционное зондирование», неоднократно встречающемся в тексте. Этим термином ещё в советской литературе принято было переводить английское «Remote Sensing», что, строго говоря, неверно. Sensing скорее означает получение информации, идентификацию или индикацию, причём в нашем случае она осуществляется в основном путём регистрации естественного излучения, реже (при радарной съёмке) излучения, отражённого от посланного искусственного источника. Что же касается термина «зондирование», то в геологии им обозначают способы исследования литосферы, осуществляемые путём возбуждения искусственных сигналов, регистрации и интерпретации «откликов» на них земных недр (сейсмическое зондирование, электрозондирование и т.п.). (П. Кронберг, 1988)

Со второй половины 80-х годов  в развитии технических средств  ДЗ начался переход от использования  фотоматериалов как носителей информации к цифровым системам, строящим изображения  на магнитных носителях. Это привело к повышению динамического диапазона и линейности регистрации, появлению метрологически обеспеченных, оптически совмещённых по различным спектральным каналам цифровых дистанционных материалов, ориентированных не на визуальную, а на инструментальную (компьютерную) обработку. (Архипов В. С. И др., 2000)

В 1970-х годах и даже в начале 1980-х основная деятельность по компьютерной обработке данных дистанционного зондирования (ДДЗ) в мире была сосредоточена в  ограниченном числе организаций геологического профиля и не только: у непосредственных поставщиков данных, т.е. у тех, кто принимал и распространял информацию с космических спутников, или в крупных научно-исследовательских учреждениях, зачастую военного или астрономического профиля, связанных с космическими исследованиями Земли и планет или с проблемами обработки изображения. Как правило, такие организации отличались хорошим техническим оснащением по меркам того времени. Несмотря на то, что трудились в таких организациях довольно большие научные коллективы, приоритетными были разработки различных методов обработки изображения, а осуществляли их в основном математики и программисты, а не представители прикладных наук (географы, геологи, лесники, ботаники, почвоведы и др.). Обычно результатом работ таких коллективов являлись уникальные пакеты программ, а не коммерческие универсальные продукты. В производственных объёмах осуществлялась, как правило, лишь предварительная обработка ДДЗ. Тематическое дешифрирование имело в основном характер научного эксперимента.

В России в начале 1990-х годов начали функционировать космические многоспектральные и радиолокационные системы получения дистанционной информации в цифровом виде МСУ-М, МСУ-СК, МСУ-Э, Алмаз, а также фотографические системы высокого пространственного разрешения КФА-1000, МК-4, КФА-3000, ТК-350, КВР-1000. За рубежом широко используются данные многоспектральных и радиолокационных космических съемок систем Landsat MSS, EТМ+ (США), Spot (Франция), ERS (Европа), JERS-1, ADEOS (Япония), RADARSAT (Канада). В настоящее время общедоступными и активно распространяемыми для потребителей являются данные спутниковых съемочных систем LANDSAT, SPOT, IRS, QUICKBIRD, IKONOS, ORBVIEW, Ресурс.

Возможность и необходимость использования  материалов ДЗ для решения широкого круга задач в области геологии и недропользования были показаны на различных примерах и декларативно отражены в ряде инструкций. Но работы такого плана, не смотря на их очевидную высокую информативность и относительную дешевизну, не нашли самого широкого применения, за исключением отдельных ведомства (во времена СССР) или компаний (в настоящее время). В первую очередь это обусловлено неудачными попытками фирм геологоразведочного профиля, не имеющих специальной базы (подготовленных специалистов по обработке и дешифрированию космоматериалов и в области ГИС-технологий, специальных программных продуктов и соответствующей вычислительной техники), получить качественную информацию из материалов КС.

Современные данные ДЗЗ представлены мультиспектральными и радиолокационными материалами, геологическая и прогнозно-поисковая информативность которых значительно выше, нежели космоснимков «видимых» диапазонов. Но это требует специальных знаний и технологий в их обработке.

 

1.3. ГИС

Пионерский период (поздние 1950е — ранние 1970е гг.)

Было проведено исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е — нач. 1980е гг.)

Государственная поддержка  ГИС стимулировала развитие экспериментальных  работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е — настоящее время)

Широкий рынок разнообразных  программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е — настоящее время)

Повышенная конкуренция  среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Информация о работе Использование аэрокосмических методов в геологии