Биологические методы очистки стоков

Автор работы: Пользователь скрыл имя, 18 Апреля 2015 в 18:00, реферат

Описание работы

Следует также помнить, что проблему экологии нельзя решать в масштабах одной страны или группы стран, поскольку вредные антропогенные загрязнения, вырабатываемые в индустриально развитых регионах и странах, в результате естественной циркуляции водных и воздушных масс распространяются по всей территории Земли, вплоть до обоих полюсов, проникают в глубины океанов и достигают стратосферы.

Содержание работы

Введение. - стр. 3
II. Биологические методы очистки стоков. - стр. 3

1. Аэробные процессы очистки сточных вод. - стр. 5

2. Анаэробные процессы очистки сточных вод. - стр. 12
III. Утилизация твердых отходов. - стр. 14
IV. Биоочистка воздушных выбросов. - стр. 16
V. Биодеградация ксенобиотиков. - стр. 21
VI. Заключение. - стр. 26
Список использованной литературы. - стр. 27

Файлы: 1 файл

Экобиотехнология, принципы охраны окружающей среды.doc

— 328.00 Кб (Скачать файл)



 

Известны также случаи перераспределения генетического материала между плазмидами и хромосомой хозяина, приводящие к появлению совершенно новых генов. Пластичность катаболических плазмид обеспечивает перераспределение генетического материала, что может привести к возникновению в природе нового организма, эффективно деградирующего новый субстрат.

Таким образом, природные генетические механизмы обмена информации позволяют получать эффективные штаммы-деструкторы ксенобиотиков. Это тем более важно, так как общепринятые методы работы с рекомбинантными ДНК, применяемые для клонирования чужеродной ДНК с небольшим числом генов, имеют существенные ограничения при клонировании метаболических путей деградации ксенобиотиков, кодируемых десятками генов. Ограничения также обусловлены недостатком знаний о механизмах деградации и структуре метаболических путей, а также возможностями риска, связанного с попаданием сконструированных организмов в среду. Методы генетической инженерии могут быть полезными для усовершенствования уже существующих деградативных способностей микробных клеток.

Большинство пестицидов, попадающих в окружающую среду в результате использования их для обработки сельскохозяйственных культур, расщепляются бактериями и грибами. Превращение исходного пестицида в менее сложное соединение достаточно эффективно происходит под воздействием микробных сообществ. Доказана возможность полной минерализации ДДТ в ходе сопряженного метаболизма. Высокая токсичность ряда пестицидов может утрачиваться уже на первой стадии микробной трасформации. Это позволяет разрабатывать относительно простые микробиологические методы для борьбы с ксенобиотиками. Описаны опыты успешного применения ферментов (гидролаз, эстераз, ациламидаз и фосфоэстераз) для проведения первичного гидролиза пестицидов и увеличения степени их последующей биодеградации. Например, с помощью паратионгидролазы из Pseudomonas sp. можно достаточно эффективно удалять остаточный паратион из контейнеров с данным пестицидом, а забуференные растворы данного фермента применяют для уничтожения разливов паратиона на почвах. На основе иммобилизованных ферментов возможно удаление пестицидов из сточных вод; ферменты применяют также в виде аэрозолей для удаления пестицидов с промышленных установок.

Большую опасность для окружающей среды представляют полиароматические углеводороды. Так, полихлорбифенилы (ПХБ) являются очень устойчивыми соединениями, долго присутствующими в окружающей среде в результате прочной адсорбции биологическими и осадочными породами и плохой миграции. Микроорганизмы не способны глубоко деградировать эти соединения, тем не менее, модифицируют их. Установлена способность микробных сообществ деградировать промышленные ПХБ с образованием новых типов углеводородов, при этом молекулы с низкой степенью хлорирования расщепляются. Устойчивое полиароматическое соединение бензапирен не минерализуется в системах активного ила, хотя описано несколько микробных видов, способных частично его метаболизировать. В ходе деградации бензапирена образуются канцерогенные соединения (гидрокси- и эпоксипроизводные). Также устойчив к деградации полистирол, хотя описано несколько случаев частичной деградации измельченных автомобильных шин, изготовленных из стирол-бутадиеновой резины. Есть сообщения о росте микробного сообщества на стироле, в ходе которого разрушается ингибитор полимеризации 4-трет-бутилкатехол, далее происходит свободнорадикальная полимеризация стирола с осаждением образующегося полистирола. Этот полимер впоследствии под воздействием микробного сообщества исчезает из почвы.

Одной из крупнейших групп загрязнителей природы являются галогенсодержащие ксенобиотики, которые характеризуются высокой токсичностью и плохой деградируемостью. Причина токсичности и устойчивости этих соединений определяется наличием в них трудно расщепляемой галоген-углеродной связи. Однако, как оказалось, ряд галогенсодержащих соединений являются природными образованиями и представляют собой метаболиты бактерий, грибов, водорослей. Это определило судьбу отдельных галогенсодержащих соединений в природе. Наличия данной природной предпосылки для полной деградации ксенобиотика, однако, недостаточно. Для эффективной трансформации родственного ксенобиотического соединения необходима адаптация микроорганизма, включая его генетическую изменчивость. Длительные исследования путей деградации галогенсодержащих ксенобиотиков показали, что для получения суперштамма, эффективно разлагающего данные ксенобиотики, нужно модифицировать существующий катаболический механизм деградации ароматических соединений. Идея конструирования катаболических путей принадлежит Рейнеке и Кнакмуссу, создавшим штамм Pseudomonas, способный деградировать 4-хлорбензоат. В эксперименте по скрещиванию Pseudomonas putida PaW1, обладающего TOL-плазмидой pWWO с Pseudomonas sp. B13 (pWR1), утилизирующим 3-хлорбензоат, они получили трансконьюгат, способный использовать 4-хлорбензоат в результате переноса гена толуол-1,2-диоксигеназы (контролируемого плазмидой pWWO), в штамм Pseudomonas sp. B13. Аналогичный результат был получен при совместном культивировании в хемостате двух культур – P. aeruginosa, содержащей плазмиду pAC25, и культуры, содержащую TOL. Первая плазмида, связанная с катаболизмом галогенированных органических соединений (2,4-дихлорфеноксиуксусной кислоты), была обнаружена у Alcaligenes paradoxus, затем у других микроорганизмов. Позже появилась серия публикаций о деградации 2,4-Д, однако сообщения по разрушению 2,4,5-трихлорукусной кислоты были крайне редки. Впоследствии при совместном культивировании в хемостате в течение 8–10 месяцев микробных культур, содержащих несколько катаболических плазмид, при постепенном увеличении концентрации 2,4,5-Т получили штамм, способный к деградации 2,4,5-Т и трихлорфенола.

Биологические методы также применимы для очистки природной среды от нефтяных загрязнений, представляющих собой как сточные воды нефтяной промышленности, так и непосредственное загрязнение в результате разлива нефти. Сточные воды нефтяной промышленности очищают биологическими методами после удаления большей части смеси различных углеводородов физическими методами. Для этого применяют аэрируемые системы биоочистки с активным илом, содержащим адаптированное к компонентам нефти сообщество. Скорость деградации зависит от качественного состава и концентрации углеводородов, а также температуры и степени аэрации среды. Наиболее эффективно биодеградация осуществляется, когда нефть эмульгирована в воде. Особую проблему представляют выбросы и аварийные разливы нефти на поверхность почвы. Это приводит не только к загрязнению пахотных земель, но также и источников питьевой воды. В почве содержится много микробных видов, способных деградировать углеводороды, но их активность часто низка, в том числе и в результате дефицита отдельных биогенных элементов. В таких случаях эффективным является внесение в почву так называемых «олеофильных удобрений», в состав которых входят соединения азота, фосфаты и другие минеральные элементы, концентрации которых в почве достаточно низки и лимитируют рост микроорганизмов. После внесения этих соединений в почву концентрация микроорганизмов-деструкторов существенно возрастает, и возрастает скорость деградации нефти.

С помощью генетического конструирования создан «супермикроб», способный утилизировать большинство основных углеводородов нефти (рис. 7). Многие природные штаммы Pseudomonas putida несут катаболические плазмиды, каждая из которых кодирует фермент для расщепления одного класса углеводородов – плазмида OCT обуславливает расщепление октана, гексана, декана; XYL – ксилола и толуола; CAM – камфары, NAH – нафталина. Плазмиды CAM и NAH сами способствуют своему переносу, стимулируя спаривание бактерий.

В результате последовательных скрещиваний был получен «суперштамм», несущий плазмиды XYL и NAH и гибридную плазмиду, содержащую части плазмид OCT и CAM. Такая мультиплазмидная бактерия растет, утилизируя неочищенную нефть. Однако возможность эффективного применения такого организма в естественных условиях требует доказательства.

 

Рис. 7. Суперштамм, полученный на основе последовательных скрещиваний  
четырех штаммов Pseudomonas putida (по Д. Хопвуду, 1984).

Штамм содержит XYL и NAH плазмиды, гибридную плазмиду CAM/OCT,  
так как изолированные плазмиды CAM и ОСТ не способны существовать в одной клетке.


 

Использование методов генетического конструирования микробных штаммов-деструкторов ксенобиотиков для практического применения находится на ранней стадии. Одна из основных проблем при конструировании микроорганизмов на основе природных катаболических плазмид – стабильность. Стабильность систем «хозяин-вектор» особенно важна при интродукции штаммов в естественную среду. При возвращении микроорганизма с новой катаболической функцией в исходную природную среду ему приходится конкурировать с хорошо адаптированной к данным условиям среды естественной микрофлорой, сталкиваться с огромным разнообразием источников углерода, в том числе высокотоксичных. При этом совершенно неясны перспективы сохранения стабильности новой катаболической функции и, следовательно, самого штамма.

Пока существует большой разрыв между достижениями, полученными в конструировании микроорганизмов, и возможностями их практического применения. Вероятно, в будущем наиболее перспективными для детоксикации ксенобиотиков будут биологические системы, состоящие из микробиологической консорции индивидуальных организмов и микробных сообществ, полученных методами клеточной и генетической инженерии.

 

VI. Заключение.

     В заключении хочется сказать, что в наши дни экобиотехнология является одним из наиболее перспективных направлений биотехнологии. Благодаря своей актуальности и насущности данное направление носит не только экологический, но и экономический характер, предоставляя широкие возможности для создания и эксплуатации коммерческих предприятий по разработке и внедрению эколого-биотехнологических методик. Можно также предположить, что последующие научные исследования будут направлены на создание более дешевых и простых в эксплуатации биоустановок и получение возможно большего количества ценного сырья из переработанных отходов.

 

 

 

Список использованной литературы.

 

  1. Т. Г. Волова «Биотехнология». Новосибирск, издательство СО РАН, 1999.
  2. Н. Э. Коломинец, О. А. Мальцева, С. Е. Дмитрук «Экологическия биотехнология в лесных экосистемах», Россия. Сибирский государственный медицинский университет.
  3. «Канализация», под ред. А. И. Жукова, 4 изд., Москва, 1969.
  4. «Экологическая биотехнология», под ред. К. Ф. Форстера и А. А. Дж. Вейза, Л-д, Химия, Лен. отд., 1990.
  5. Большой энциклопедический словарь «Ветеринария» под ред. В. П. Шишкова. Научное издательство «Большая Российская энциклопедия», Москва, 1998.
  6. «Зоогигиена и ветеринарная санитария в промышленном животноводстве». Москва, 1973.

 


Информация о работе Биологические методы очистки стоков