Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 13:51, курсовая работа
Смысл системного подхода при исследовании процессов развития в технике заключается в рассмотрении любого технического объекта как системы взаимосвязанных элементов, образующих единое целое. Линия развития представляет собой совокупность нескольких узловых точек - технических систем, резко отличающихся друг от друга (если их сравнивать только между собой); между узловыми точками лежит множество промежуточных технических решений - технических систем с небольшими изменениями по сравнению с предшествующим шагом развития.
Введение 2
1. Общее определение ТС 3
2. Функциональность 5
3. Структура 8
4. Организация 19
5. Системный эффект (качество) 24
Московский государственный открытый университет
Чебоксарский политехнический институт (филиал)
Курсовая работа по дисциплине
Моделирование систем
Тема: Функции и основные части технической системы.
Выполнил студент 4 курса
Факультета информатики и радиоэлектроники
Очной формы обучения
Специальность 220201
Садырга Роман Александрович
Учебный шифр шифр 608103
Проверила Денисова О.М.
Чебоксары 2012 г.
Оглавление
Смысл системного подхода при исследовании процессов развития в технике заключается в рассмотрении любого технического объекта как системы взаимосвязанных элементов, образующих единое целое. Линия развития представляет собой совокупность нескольких узловых точек - технических систем, резко отличающихся друг от друга (если их сравнивать только между собой); между узловыми точками лежит множество промежуточных технических решений - технических систем с небольшими изменениями по сравнению с предшествующим шагом развития. Системы как бы "перетекают" одна в другую, медленно эволюционируя, отодвигаясь все дальше от исходной системы, преображаясь иногда до неузнаваемости. Мелкие изменения накапливаются и становятся причиной крупных качественных преобразований. Чтобы познать эти закономерности, необходимо определить, что такое техническая система, из каких элементов она состоит, как возникают и функционируют связи между частями, каковы последствия от действия внешних и внутренних факторов, и т.д. Несмотря на огромное разнообразие, технические системы обладают рядом общих свойств, признаков и структурных особенностей, что позволяет считать их единой группой объектов.
Каковы основные признаки технических систем? К ним можно отнести следующие:
Поясним это простым примером. Допустим, необходимо составить фоторобот преступника. Перед свидетелем поставлена четкая цель: составить систему (фотопортрет) из отдельных частей (элементов), система предназначается для выполнения весьма полезной функции. Естественно, что части будущей системы не соединяются как попало, они должны дополнять друг друга. Поэтому идет длительный процесс подбора элементов таким образом, чтобы каждый элемент, входящий в систему, дополнял предыдущий, а вместе они увеличивали бы полезную функцию системы, то есть усиливали бы похожесть портрета на оригинал. И вдруг, в какой-то момент, происходит чудо - качественный скачок! - совпадение фоторобота с обликом преступника. Здесь элементы организованы в пространстве строго определенным образом (невозможно переставить их), взаимосвязаны, вместе дают новое качество. Даже если свидетель абсолютно точно идентифицирует по отдельности глаза, нос и т.д. с фотомоделями, то эта сумма "кусочков лица" (каждый из которых правильный!) ничего не дает - это будет простая сумма свойств элементов. Только функционально точно соединенные элементы дают главное качество системы (и оправдывают ее существование). Точно так же набор букв (например, А, Л, К, Е), соединившись только определенным образом дает новое качество (например, ЕЛКА).
ТЕХНИЧЕСКАЯ СИСТЕМА - это совокупность упорядоченно взаимодействующих элементов, обладающая свойствами, не сводящимися к свойствам отдельных элементов, и предназначенная для выполнения определенных полезных функций.
Таким образом, техническая система имеет 4 главных (фундаментальных) признака:
Отсутствие хотя бы одного признака не позволяет считать объект технической системой. Поясним эти признаки подробнее.
В основе любого трудового процесса, в том числе изобретательского, лежит понятие цели. Бесцельного изобретения не существует. В технических системах цель задается человеком и они предназначены для выполнения полезной функции. Уже инженер древнего Рима Витрувий утверждал: "Машина есть деревянное приспособление, которое оказывает большую помощь при поднятии тяжести". Цель - воображаемый итог, к которому стремятся, удовлетворяя потребность. Таким образом, синтез ТС - это целенаправленный процесс. Любое сегодняшнее состояние может иметь в будущем множество последствий, абсолютное большинство которых лежат в русле энтропийных процессов. Человек выбирает цель и тем самым резко повышает вероятность нужных ему событий. Целенаправленность - эволюционно приобретенный (или заданный?...) навык борьбы с энтропийными процессами.
Появление цели - это результат осознания потребности. Человек отличается от других живых существ тем, что ему свойственны повышенные притязания - намного выше возможности естественных органов. Потребность (постановка задачи) - это то, что нужно иметь (сделать), а функция - реализация потребности в ТС.
Потребность может быть
удовлетворена несколькими
Возникновение потребностей, осознание цели и формулирование функции - это процессы, происходящие внутри человека. Но реально действующая функция - это воздействие на предмет труда (изделие) или служение человеку. То есть, не хватает промежуточного звена - рабочего органа. Это и есть носитель функции в чистом виде. РО - единственная функционально полезная человеку часть технической системы. Все остальные части вспомогательны. ТС и возникали на первых этапах как рабочие органы (взамен органов тела и в дополнение им). И только потом, для увеличения полезной функции. к рабочему органу "пристраивались" другие части, подсистемы, вспомогательные системы. Этот процесс можно изобразить так:
Представим себе (пока умозрительно), что возможен и обратный ход - как продолжение данного.
Первая половинка процесса - развертывание техники, вторая - свертывание. То есть человеку, в общем то, нужна функция, а не ее носитель...
Для облегчения перехода от функции к ее носителю - рабочему органу будущей ТС - необходима точность в описании функции. Чем конкретнее описана функция, чем больше дополнительных условий, тем уже диапазон средств для ее реализации, тем определеннее ТС и ее структура. Мощным ограничителем вариантности служат выявленные закономерности развития рабочих органов в составе ТС.
Функционирование это
изменение свойств, характеристик
и качеств системы в
Каждая ТС может выполнять несколько функций, из которых только одна рабочая, ради которой она и существует, остальные - вспомогательные, сопутствующие, облегчающие выполнение главной. Определение главной полезной функции (ГПФ) иногда вызывает затруднение. Это объясняется множественностью требований, предъявляемых к данной системе со стороны выше и ниже лежащих систем, а также соседних, внешних и прочих систем. Отсюда кажущаяся бесконечность определений ГПФ (принципиальная неохватность всех свойств и связей).
Пример: иерархия функций
кирпича.
ГПФ-1 отдельного кирпича:
держать свою форму, не разваливаться,
иметь определенный вес, структуру, твердость.
Требование со стороны соседних систем
(других кирпичей и раствора в будущей
стене): иметь прямоугольные грани, схватываться
с раствором.
ГПФ-2 стены: нести себя,
быть вертикальной, не деформироваться
при изменении температуры, влажности,
нагрузки, ограждать что-то, нести нагрузку
от чего-то. Кирпич должен соответствовать
части требований ГПФ 2.
ГПФ-3 дома: должен создавать
определенные условия для внутренней
среды, защиту от атмосферных воздействий,
иметь определенный внешний вид. Кирпич
должен выполнять часть и этих требований.
ГПФ-4 города: определенный
архитектурный облик, климатические и
национальные особенности и т.д.
Кроме того, требование и
к самому кирпичу постоянно
Так вот, ГПФ данной системы - это выполнение требований первой вышестоящей системы. Все остальные требования, по мере удаления иерархического уровня, от которого они исходят, оказывают все меньшее влияние на данную систему. Эти над и подсистемные требования могут быть выполнены и другими веществами и системами, не обязательно данной системой. Например, свойство прочности кирпича может быть достигнуто различными добавками в исходную массу, а свойство эстетичности приклеиванием декоративной плитки на готовую стенку; для ГПФ кирпича (выполнять "требования" стены) это безразлично.
То есть, ГПФ элемента определяется системой, в которую он включается. Тот же кирпич может быть включен во множество других систем, где его ГПФ будет совершенно непохожей (а то и противоположной) приведенной выше.
Пример. Определить ГПФ калорифера.
Это путь вверх по иерархии целей - в надсистему. Называемая на каждом этаже функция (цель) может быть выполнена и другой ТС. Калорифер входит в систему: "дом-воздух-человек-калорифер" и выполняет ее "требования".
Можно спуститься вниз по иерархии:
Итак," требование" НС для калорифера - нагревать воздух. А что делает калорифер (его рабочий орган - спираль)? - производит тепло, тепловое поле. Вот это и есть ГПФ калорифера - производство тепла, как "ответ" на "требование" надсистемы. Здесь тепловое поле - изделие "выпускаемое" технической системой "калорифер". ГПФ надсистемы - обеспечение комфортных условий для человека.
Совокупность (целостность)
элементов и свойств
Если определение функции (цели) системы в какой-то мере зависит от человека, то структура - наиболее объективный признак системы, она зависит только от вида и материального состава используемых в ТС элементов, а также от общих законов мира, диктующих определенные способы соединения, виды связи и режимы функционирования элементов в структуре. В этом смысле структура это способ взаимного соединения элементов в системе. Составление структуры - это программирование системы, задание поведения ТС с целью получения в результате полезной функции. Требуемая функция и выбранный физический принцип ее осуществления однозначно задают структуру.
Структура - это совокупность элементов и связей между ними, которые определяются физическим принципом осуществления требуемой полезной функции.
Структура остается неизменной в процессе функционирования, то есть при изменении состояния, поведения, совершения операций и любых других действий.
Информация о работе Функции и основные части технической системы