Белки и аминокислоты

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 10:33, доклад

Описание работы

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.
В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.
Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Файлы: 1 файл

Белки и аминокислоты.docx

— 81.04 Кб (Скачать файл)

Белки и аминокислоты

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный  состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут  ли аминокислоты синтезироваться в  организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного  состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

 

Аминокислоты - класс органических соединений, содержащих карбоксильные (-COOH) и аминогруппы (-NH2); обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов, медиаторов, пигментов, пуриновых и пиримидиновых оснований, алкалоидов и др.). Природных аминокислот св. 150. Около 20 важнейших аминикислот служат мономерными звеньями, из которых построены все белки (порядок включения аминокислот в них определяется генетическим кодом). Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию т. н. незаменимых аминокислот, получаемых с пищей. Освоен промышленный синтез (химический и микробиологический) ряда аминокислот, используемых для обогащения пищи, кормов, как исходные продукты для производства полиамидов, красителей и лекарственных препаратов.

АМИНОКИСЛОТЫ, органические (карбоновые) кислоты, в  составе которых имеется аминогруппа (-- NH2). Участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; дигидроксифенилаланин (ДОФА) и g-аминомасляная кислота служат посредниками при передаче нервных импульсов.

В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 из них служат звеньями (мономерами), из которых построены  пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов  соответствующих генов. Остальные  аминокислоты встречаются как в  виде свободных молекул, так и  в связанном виде. Многие из аминокислот  встречаются лишь в определенных организмах, а есть и такие, которые  обнаруживаются только в одном из великого множества описанных организмов.

История открытия аминокислот

Первая  аминокислота -- аспарагин -- была открыта в 1806, последняя из аминокислот, обнаруженных в белках, -- треонин -- была идентифицирована в 1938. Каждая аминокислота имеет тривиальное (традиционное) название, иногда оно связано с источником выделения. Например, аспарагин впервые обнаружили в аспарагусе (спарже), глутаминовую кислоту -- в клейковине (от англ. gluten -- глютен) пшеницы, глицин был назван так за его сладкий вкус (от греч. glykys -- сладкий).

Структура и свойства аминокислот

Общую структурную формулу любой аминокислоты можно представить следующим  образом: карбоксильная группа (-- СООН) и аминогруппа (-- NH2) связаны с одним и тем же a-атомом углерода (счет атомов ведется от карбоксильной группы с помощью букв греческого алфавита -- a, b, g и т. д.). Различаются же аминокислоты структурой боковой группы, или боковой цепи (радикал R), которые имеют разные размеры, форму, реакционную способность, определяют растворимость аминокислот в водной среде и их электрический заряд. И лишь у пролина боковая группа присоединена не только к a -углеродному атому, но и к аминогруппе, в результате чего образуется циклическая структура.

В нейтральной среде и в кристаллах -аминокислоты существуют как биполяры, или цвиттер-ионы. Поэтому, например, формулу аминокислоты глицина -- NH2--CH2--СООH -- правильнее было бы записать как NH3+--CH2--COO-.

Только  в наиболее простой по структуре  аминокислоте -- глицине -- в роли радикала выступает атом водорода. У остальных аминокислот все четыре заместителя при a -углеродном атоме различны (т. е. a -углеродный атом углерода асимметричен). Поэтому эти аминокислоты обладают оптической активностью (способны вращать плоскость поляризованного света) и могут существовать в форме двух оптических изомеров -- L (левовращающие) и D (правовращающие). Однако все природные аминокислоты являются L-аминокислотами. К числу же исключений можно отнести D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других аминокислот, которые обнаружены в клеточной стенке бактерий; аминокислоты D-конформации входят в состав некоторых пептидных антибиотиков (в том числе актиномицинов, бацитрацина, грамицидинов A и S), алкалоидов из спорыньи и т. д.

Использование аминокислот

Аминокислоты  находят широкое применение в  качестве пищевых добавок. Например, лизином, триптофаном, треонином и метионином обогащают корма сельскохозяйственных животных, добавление натриевой соли глутаминовой кислоты (глутамата натрия) придает ряду продуктов мясной вкус. В смеси или отдельно аминокислоты применяют в медицине, в том числе при нарушениях обмена веществ и заболеваниях органов пищеварения, при некоторых заболеваниях центральной нервной системы (g-аминомасляная и глутаминовая кислоты, ДОФА). Аминокислоты используются при изготовлении лекарственных препаратов, красителей, в парфюмерной промышленности, в производстве моющих средств, синтетических волокон и пленки и т. д.

Для хозяйственных и медицинских  нужд аминокислоты получают с помощью  микроорганизмов путем так называемого микробиологического синтеза (лизин, триптофан, треонин); их выделяют также из гидролизатов природных белков (пролин, цистеин, аргинин, гистидин). Но наиболее перспективны смешанные способы получения, совмещающие методы химического синтеза и использование ферментов.

Классификация аминокислот

Все встречающиеся в природе аминокислоты обладают общим свойством - амфотерностью, т.е. каждая аминокислота содержит как  минимум одну кислотную и одну основную группу. Общий тип строения аминокислот может быть представлен  в следующем виде:

Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все амино- и карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно- основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Аминокислоты  классифицируют на основе химического  строения радикалов, хотя были предложены и другие принципы. Различают ароматические  и алифатические аминокислоты, а  также аминокислоты, содержащие серу или гидроксильные группы. Часто  классификация основана на природе  заряда аминокислоты. Если радикал  нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группу), то они называются нейтральными аминокислотами. Если же аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

Современная рациональная классификация аминокислот  основана на полярности радикалов, т.е. способности их к взаимодействию с водой. Она включает четыре класса аминокислот:

1) неполярные (гидрофобные)

2) полярные (гидрофильные) незаряженные

3) отрицательно  заряженные

4) положительно  заряженные при физиологических значениях pH

В представленной классификации аминокислот  приведены наименования, структурные  формулы, сокращенные обозначения  и однобуквенные символы аминокислот, принятые в отечественной и иностранной  литературе, а также значения изоэлектрической точки pI.

Перечисленные аминокислоты присутствуют в различных  количественных соотношениях и последовательностях, в тысячах белков, хотя отдельные индивидуальные белки и не содержат полный набор всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот (эти аминокилоты образуются после завершения синтеза белка в рибосоме клеток в результате постсинтетической химической модификациии): оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин.

Первые  две аминокислоты содержаться в  белке соединительной ткани - коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также N-метиллизин.

Конкретные  аминокислоты:

Аланин  [CH3CH(NH2)COOH]

Аргинин (NH2-C=NH)

Глицин  H2NCH2СOOH

Гистидин

Аспарагиновая кислота COOHCH2CHNH2COOH

Глутаминовая кислота COOHCH2=CH2=CH(NH2)=COOH

Оксипролин

Норлейцин CH3(CH2)3CH(NH2)COOH

Лейцин

Лизин

Пролин

Триптофан

L-триптофан

Изолейцин C2H5CH(CH3)CH(NH2)COOH

Валин (CH3)2CHCH(NH2)-COOH

Цистеин HOOCCH(NH2)CH2S2

Тирозин

Серин HOCH2CH(NH2)COOH

 

Пространственная  организация белковых молекул

Выполнение белками определенных специфических функций зависит  от пространственной конфигурации их молекул, кроме того, клетке энергетически  невыгодно держать белки в  развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура  белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит  всего из 10 аминокислотных остатков, то число теоретически возможных  вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура  белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной  аминокислоты на другую в полипептидной  цепочке приводит к изменению  свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

        
        

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

                                  

Четвертичная  структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Информация о работе Белки и аминокислоты