Концептуальные уровни в познании веществ и химические системы

Автор работы: Пользователь скрыл имя, 11 Января 2014 в 12:10, реферат

Описание работы

В данной работе рассматривается тема. Химию обычно рассматривали как науку о составе и качественном превращении различных веществ. В первое время именно по составу реагирующих веществ пытались объяснить свойства полученных новых веществ. Уже на этом этапе ученые встретились с огромными трудностями. Ведь для того чтобы понять, какие именно первоначальные элементы определяют свойства простых и сложных веществ, надо, во-первых, уметь различать простые и сложные вещества, а во-вторых, определить те элементы, от которых зависят их свойства. Между тем долгое время ученые считали, например, металлы сложными веществами, а об элементах существовали самые противоречивые представления.

Содержание работы

Введение……………………………………………………………...………...3
1. История развития знаний о веществе……………………………………...4
2. Уровни в познании веществ………………………………………..............7
3. Химические системы……..………………………………………….……...8
4. Самоорганизация и эволюция химических систем…………………........10
5. Виды химических систем…………………………………………………..12
6.Реакция Белоусова-Жаботинского………………………………………….15
Список литературы…………………………………………………………….16

Файлы: 1 файл

картина мира.doc

— 87.50 Кб (Скачать файл)

Содержание

Введение……………………………………………………………...………...3

1. История развития  знаний о веществе……………………………………...4

2. Уровни в познании веществ………………………………………..............7

3. Химические системы……..………………………………………….……...8

4. Самоорганизация и эволюция химических систем…………………........10

5. Виды химических  систем…………………………………………………..12

6.Реакция Белоусова-Жаботинского………………………………………….15

Список литературы…………………………………………………………….16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

 

В данной работе рассматривается  тема "Концептуальные уровни в познании веществ и химические системы". Химию обычно рассматривали как науку о составе и качественном превращении различных веществ. В первое время именно по составу реагирующих веществ пытались объяснить свойства полученных новых веществ. Уже на этом этапе ученые встретились с огромными трудностями. Ведь для того чтобы понять, какие именно первоначальные элементы определяют свойства простых и сложных веществ, надо, во-первых, уметь различать простые и сложные вещества, а во-вторых, определить те элементы, от которых зависят их свойства. Между тем долгое время ученые считали, например, металлы сложными веществами, а об элементах существовали самые противоречивые представления. Поэтому, несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, по сути дела, до открытия в 1869 г. Периодической системы химических элементов Дмитрия Ивановича Менделеева (1834-1907) не существовало той объединяющей концепции, с помощью которой можно было бы объяснить весь накопленный фактический материал, а следовательно, представить все наличное знание как систему теоретической химии. Таким образом, систематизация химического знания - совсем недавнее свершение, потому актуальность данной темы не вызывает сомнений.

Цель работы - анализ концептуальных уровней в познании веществ.

Объект исследования - химические системы.

 

 

 

 

 

 

 

 

 

 

1. История развития  знаний о веществе.

       Естествознание как наука о явлениях и законах природы включает одну из важнейших отраслей – химию. В современном понимании химия – это наука о превращениях веществ, сопровождающихся изменением их состава и (или) строения. История развития химических знаний начинается с древних времен, когда в V веке до н.э. древнегреческий философ Левкипп впервые предложил гипотезу атомного строения материи. Гораздо позднее античному натурфилософскому атомистическому учению о строении вещества противопоставлялась алхимия – донаучное направление, получившее развитие в Западной Европе в XI – XVI веках. Основные задачи алхимии заключались в нахождении так называемого «философского камня» для превращения неблагородных металлов в золото и серебро, в создании эликсира долголетия. В эпоху Возрождения результаты химических исследований все чаще начинают применяться в металлургии, стеклоделии, производстве керамики и красок. 
Первое научное определение химического элемента предложил в 1661 году английский химик и физик, основоположник экспериментального химического анализа Р.Бойль. В современном представлении химический элемент – это совокупность атомов с одинаковым зарядом ядра. Основываясь на результатах своих экспериментов, Бойль сделал важный вывод: качество и свойства веществ зависят от того, из каких химических элементов оно состоит. 
        Принято считать, что химия стала подлинной наукой во второй половине 18 века, когда первый российский ученый-естествоиспытатель М.В.Ломоносов сформулировал закон сохранения материи и движения, исключив из числа химических агентов флогистон – невесомую материю. Первая химическая теория – теория флогистона, согласно которой металлы считались сложными соединениями, состоящими из соответствующих элементов и универсального флогистона, оказалась ошибочной. Независимо от Ломоносова французский химик А.Л.Лавуазье, определяя роль кислорода в процессе горения, окисления и дыхания, опроверг теорию флогистона. 
       В начале 19 века английский химик и физик Д.Дальтон заложил основы химической атомистики. Он впервые ввел понятие «атомный вес», определил атомные массы ряда элементов и открыл закон кратных отношений: если два химических элемента образуют друг с другом более одного соединения, то массы одного элемента, приходящиеся на одну и ту же массу другого, относятся как целые числа.  
       В 1811 году итальянский физик и химик А.Авогадро ввел термин «молекула» и выдвинул молекулярную гипотезу строения вещества. Молекула – это микрочастица, образованная из атомов и способная к самостоятельному существованию.  
       В 1861 году российский химик А.М.Бутлеров создал и обосновал теорию химического строения вещества, согласно которой свойства веществ определяются порядком связей атомов в молекулах и их взаимным влиянием.  
       В 1869 году Д.И.Менделеев открыл периодический закон химических элементов – один из фундаментальных законов естествознания. Сам автор сформулировал закон в следующем виде: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов. Современная формулировка этого закона такова:строение и свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атомов и определяется периодически повторяющимися однотипными электронными конфигурациями их атомов. Заряд ядра равен атомному номеру элемента в Периодической системе Меделеева.  
       По мере развития химии формировались многие ее отрасли: органическая химия, физическая химия, аналитическая химия. На стыке химических и других отраслей естествознания появились биохимия, агрохимия, геохимия. Результаты химических исследований составляют основу многих современных технологий. В последние десятилетия появилась реальная возможность проводить исследования на молекулярном уровне. Такие исследования позволили раскрыть механизм многих процессов в живом организме, синтезировать не существующие в природе вещества с необычными свойствами, установить сложную структуру молекулы ДНК, расшифровать молекулярный генный механизм наследственности. Сегодня ученые уже приступили к конструированию устройств из отдельных молекул и созданию молекулярного компьютера. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Уровни в познании веществ.

Современную картину  химических знаний объясняют с позиций  четырех концептуальных систем(уровней):  
 Первый концептуальный уровень – это исследование различных свойств веществ в зависимости от химического состава, определяемого их элементами (учение о составе). То есть первоначально химики искали ту первоначальную основу или элемент, с помощью которого пытались объяснить свойства всех простых и сложных веществ (1660-ые – 1800-ые годы). 
 Второй концептуальный уровень познания веществ связан с исследованием структуры, то есть способа взаимодействия элементов веществ (структурная химия). Это было необходимо потому, что свойства полученных в результате химических реакций веществ зависят не только от элементов, но и от их взаимосвязи и взаимодействия в процессе реакции (1950-ые годы). 
 Третий уровень познания представляет собой исследование внутренних механизмов и условий протекания химических процессов, таких, как температура, давление, скорость протекания реакций (учение о химических процессах). Все эти факторы оказывают огромное влияние на характер процессов и объем получаемых веществ, что имеет первостепенное значение для массового производства (1970-ые годы). 

Четвертый концептуальный уровень является дальнейшим развитием предыдущего уровня, связанным с более глубоким изучением природы реагентов, участвующих в химических реакциях, а также применением катализаторов, значительно ускоряющих скорость их протекания. На этом уровне мы встречаемся уже с простейшими явлениями самоорганизации, изучаемыми синергетикой (эволюционная химия, настоящее время).

 

3. Химические системы

В химии, как в научных  исследованиях, так и при ее практическом использовании, приходится иметь дело с колоссальными числами частиц-атомов, молекул или ионов. Одинаковые или разные, эти частицы объединяются вместе, образуя систему. Химическая система характеризуется семейством понятий, определений, формулировок как содержательных - что есть что, так и формальных - каковы связи, соотношения между частями, элементами системы. Лишь в рамках такого семейства определений можно выразить основные принципы построения и связей внутри каждой конкретной системы.

Простейшими частями  химической системы, вообще говоря, являются атомы, молекулы или ионы. Однако конкретная система образуется не из абстрактных атомов, а из вполне конкретных веществ, которые могут реагировать друг с другом, вступая в химические реакции. Очень важно не только то, из каких веществ состоит система, но и то, при каких условиях она находится. Невозможно рассматривать химическую систему в отрыве от условий, в которых она существует.

Прежде всего, система  должна быть ограничена. Например, стеклянные стенки стакана, в котором слиты  растворы реагирующих веществ, ограничивают химическую систему. Стальной баллон ограничивает находящийся в нем газ. В этих случаях границы системы очевидны. Но часто систему ограничивают лишь мысленно: горящая свеча образует систему вместе с воздухом, в котором она горит, и система - пламя свечи - не имеет реальной границы, хотя мы видим пламя и можем говорить о его форме и размерах.

Химической системой называется ограниченная часть пространства, включающая какие - либо вещества. Все  то, что не входит в систему, называется внешней средой.

Система может обмениваться с внешней средой веществами (массой), информацией и энергией. Например, пламя свечи может существовать, только если в него поступает из внешней среды кислород, а продукты сгорания, в том числе и теплота, отводятся во внешнюю среду.

Если система обменивается с внешней средой веществами (массой),информацией и энергией, она называется открытой. Если обмена веществами, энергией и информацией не происходит - система называется закрытой. Если же нет обмена ни массой, ни энергией, ни информацией, тогда система называется изолированной.

 

Например, разбавленный раствор серной кислоты в открытом стакане представляет собой открытую систему - в зависимости от температуры  вода будет либо испаряться из раствора во внешнюю среду (за край стакана), если раствор нагревать, либо поглощаться серной кислотой из внешней среды (влажного воздуха за краем стакана), если раствор охлаждать. Тот же раствор в запаянной ампуле - пример закрытой системы, а налитый в хороший термос, плотно закрытый пробкой представляет изолированную систему.

Условия существования  систем

Любая химическая система  существует в каких- либо условиях: при определенных температуре и  давлении, при определенной напряженности  гравитационного, магнитного, электрического и электромагнитного полей.

На столе в пробирке при обычных условиях идет реакция:

Fe(тв) +2HCl(р-р) = FeCl2(р-р) + H2(г)

К обычным условиям относятся: температура - комнатная, то есть около 20С, давление - атмосферное, т.е. около 101 кПа, ускорение силы тяжести в среднем около 9,8 м/с, напряженность магнитного поля в среднем около 40 А/м, напряженность электрического поля в среднем около 130 В/м, освещенность видимым светом в среднем около 500 лк.

Все эти параметры настолько  привычны, что мы зачастую забываем про них, особенно про действие полей. Но теперь уже реально исследуются различия в протекании химических реакций на Земле и в несовместимости.

Во многих методах исследования используются очень сильные магнитные  и электрические поля. В условиях интенсивного облучения рентгеновскими лучами, ультрафиолетовым и даже видимым светом многие системы ведут себя иначе, чем при обычных условиях.

 

 

 

 

 

 

 

4.Самоорганизация  и эволюция химических систем.

К условиям протекания химических процессов относятся, прежде всего, термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. В еще большей степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий.

Не следует, однако, забывать, что эти условия могут оказывать  воздействие на характер и результат  химических реакций при определенной структуре молекул химических соединений. Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций. Меньшее влияние оказывают на реакции такие термодинамические факторы, как температура и давление.

Для сравнения можно  привести реакцию синтеза аммиака  из азота и водорода. Вначале его  не удавалось получить ни с помощью большого давления, ни высокой температуры, и только использование в качестве катализатора специально обработанного железа впервые привело к успеху. Однако эта реакция сопряжена с большими технологическими трудностями, которые удалось преодолеть после того, когда был использован металлорганический катализатор. В его присутствии синтез аммиака происходит при обычной температуре (18°С) и нормальном атмосферном давлении, что открывает большие перспективы не только для производства удобрений, но в будущем такого изменения генной структуры злаков (ржи и пшеницы), когда они не будут нуждаться в азотных удобрениях. Еще большие возможности и перспективы возникают с использованием катализаторов в других отраслях химической промышленности, в особенности в «тонком» и «тяжелом» органическом синтезе.

Не приводя более  примеров о чрезвычайно высокой  эффективности катализаторов в  ускорении химических реакций, следует  обратить особое внимание на то, что  возникновение и эволюция жизни  на Земле были бы невозможны без существования ферментов, служащих по сути дела живыми катализаторами. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения. Речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично - практического применения выделенных ферментов для ускорения некоторых химических реакций.

Тот факт, что катализ  играл решающую роль в процессе перехода от химических систем к биологическим, т. е. на предбиотической стадии эволюции, в настоящее время подтверждается многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши соотечественники Б.П. Белоусов и А.М. Жаботинский. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы.

Роль этих процессов  усиливается по мере усложнения состава  и структуры химических систем. На этом основании некоторые ученые, например, напрямую связывают химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Другими словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем. Следует, однако, помнить, что переход к простейшим формам жизни предполагает также особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно отметить, что из более чем ста химических элементов лишь шесть, названных органогенами, служат основой для построения живых систем.

 

 

 

 

 

 

 

 

 

5.Виды химических систем

Химическая система - сочетание веществ, взаимодействующих  друг с другом. Система отделяется от окружения мысленно или фактически. Химические системы делятся на следующие виды:

а) гомогенные

б) гетерогенные

в) дисперсионные

г) нонвариантные

д) моновариантные

е) бивариантные

ж) поливариантные.

Гомогенная система - физико-химическая система, содержащая одну фазу.

В гомогенной системе, включающей два и более химических компонента, каждый из компонентов распределяется в объеме другого соединения в виде молекул, атомов или ионов. Компоненты гомогенной системы имеют определенные значения по системе или непрерывно меняющиеся от одной к другой точке системы. Известны следующие гомогенные системы: лед, жидкие или твердые растворы, смеси газов. При этом различают жидкие, кристаллические и аморфные вещества.

Гетерогенная система - система, включающая несколько гомогенных частей (фаз), разделенных границами.

Фазы могут отличаться одна от другой составом и свойствами.

Фаза - гомогенная часть  гетерогенной системы, имеющая одинаковые свойства во всех точках и отделяющаяся от других частей границами.

Информация о работе Концептуальные уровни в познании веществ и химические системы