Ветеринарная биотехнология

Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 19:26, реферат

Описание работы

Начало развитию ветеринарной биотехнологии положил Луи Пастер, разработавший еще в конце ХIХ в. первую вакцину для животных. Именно эта разработка показала перспективы применения биотехнологии в ветеринарии, позволила развиться целому ряду процедур в последствие принесших большую пользу здоровью животных: домашних и диких, повысило качество защиты здоровья человека, что сказалось на развитии естественных и гуманитарных наук.

Содержание работы

1.Введение
2. Что такое биотехнология?
3.Биотехнология и животноводство
4.Что такое биотехнология животных?
5. Как регулируется создание генетически модифицированных животных продуктов ?
6. Биотехнология для улучшения здоровья животных
7. Сельскохозяйственные животные :скот и домашние птицы
8.Повышение продуктивности скота
9.Основные направления развития методов биотехнологии в ветеринарии
10. Достижения ветеринарной биотехнологии .
11.Вывод
12. Список литературы

Файлы: 1 файл

биотехнология.docx

— 33.46 Кб (Скачать файл)

                         Министерство сельского хозяйства РФ.

Федеральное  государственное бюджетное образовательное учреждение высшего профессионально образования  «Саратовский государственный аграрный университет им. Н.И Вавилова»

Факультет ветеринарной медицины и биотехнологии.

Кафедра микробиологии ,биотехнологии и химии

 

 

 

                  Реферат : «Ветеринарная биотехнология»

 

 

 

 

 

 

 

 

 

 

                                                                                                      Выполнила

                                                                                                      студентка 1 курса

                                                                                                      группы Б-БТ-101

                                                                                                      Кливенко Кристина

                                                                                                      Проверила доцент

                                                                                                      Потемкина И.Т

                                        Саратов 2014

                                  Содержание :

1.Введение

2. Что такое биотехнология?

3.Биотехнология и животноводство

4.Что такое биотехнология  животных?

5. Как регулируется создание  генетически модифицированных животных  продуктов ?

6. Биотехнология для улучшения  здоровья животных

7. Сельскохозяйственные  животные :скот и домашние птицы

8.Повышение продуктивности  скота

9.Основные направления  развития методов биотехнологии  в ветеринарии 

10. Достижения ветеринарной  биотехнологии .

11.Вывод 

12. Список литературы 

 

 

                                         Введение:

 

Начало развитию ветеринарной биотехнологии положил Луи Пастер, разработавший еще в конце ХIХ в. первую вакцину для животных. Именно эта разработка показала перспективы применения биотехнологии в ветеринарии, позволила развиться целому ряду процедур в последствие принесших большую пользу здоровью животных: домашних и диких, повысило качество защиты здоровья человека, что сказалось на развитии естественных и гуманитарных наук. Сегодня ветеринарная биотехнология привлекает внимание многих людей, становится актуальным предметом исследований, направленных на улучшение продуктов животноводства, здоровья самих животных, на сохранение биологического разнообразия. Поэтому более востребованными становятся выпускники академий, институтов ветеринарной медицины и биотехнологии, активнее внедряются последние новшества и разработки, увеличивается их финансирование. Развитие биотехнологии идет одновременно по нескольким направлениям, что позволяет широко внедрять полученные знания в генетике, генной инженерии, микробиологии, биохимии, в развитии химических технологий, приборостроении, используя как целые биологические объекты, например микроорганизмы, клетки тканей животных, так и отдельные молекулы белков, углеводов, ферментов, нуклеиновых кислот. Поскольку в биотехнологии используются научные достижения современной науки на очень высоком уровне, то это позволяет получать разнообразные вещества, соединения из возобновляемых, а, следовательно, сравнительно дешевых, доступных материалов. На производство искусственно синтезируемых требуются большие капиталовложения, поэтому стоимость их выше, кроме этого они плохо усваиваются человеком и животными. Как учат на факультете ветеринарной медицины и биотехнологии, все необходимые организму витамины, аминокислоты, ферменты, спирты, антибиотики, органические кислоты в процессе своей жизнедеятельности вырабатывают микроорганизмы и вирусы. А по сложности своей структуры, точности результатов, слаженности процессов, в плане экономичности, рациональности каждая из клеток превосходит любой завод. На сегодня основными направлениями использования микроорганизмов являются три биотехнологических процесса. Прежде всего, в производстве биомассы; в производственных процессах получения антибиотиков, этанола, органических кислот, др.; в процессах переработки органических/неорганических соединений природного или антропогенного происхождения.

 

 

 

                  Что такое биотехнология?

Законом Российской Федерации «О ветеринарии» определены основные задачи ветеринарной медицины «в области научных знаний и практической деятельности, направленные на предупреждение болезней животных и их лечение, выпуск полноценных и безопасных в ветеринарном отношении продуктов животноводства и защиту населения от болезней, общих для человека и животных». Решение целого ряда этих задач осуществляется методами биотехнологии. Определение биотехнологии в довольно полном объеме дано Европейской биотехнологической федерацией, основанной в 1978 г. По этому определению биотехнология - это наука, которая на основе применения знаний в области микробиологии, биохимии, генетики, генной инженерии, иммунологии, химической технологии, приборо- и машиностроения использует биологические объекты (микроорганизмы, клетки тканей животных и растений) или молекулы (нуклеиновые кислоты, белки, ферменты, углеводы и др.) для промышленного производства полезных для человека и животных веществ и продуктов. До тех пор, пока всеобъемлющий термин «биотехнология» не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология ферментов, биоинженерия, прикладная генетика и прикладная биология. Использование научных достижений в биотехнологии осуществляется на самом высоком уровне современной науки. Только биотехнология создает возможность получения разнообразных веществ и соединений из сравнительно дешевых, доступных и возобновляемых материалов. В отличие от природных веществ и соединений, искусственно синтезируемые требуют больших капиталовложений, плохо усваиваются организмами животных и человека, имеют высокую стоимость. Биотехнология использует микроорганизмы и вирусы, которые в процессе своей жизнедеятельности вырабатывают естественным путем необходимые нам вещества - витамины, ферменты, аминокислоты, органические кислоты, спирты, антибиотики и др. биологически активные соединения. Живая клетка по своей организационной структуре, слаженности процессов, точности результатов, экономичности и рациональности превосходит любой завод. В настоящее время микроорганизмы используются, в основном, в трех видах биотехнологических процессов:

  • для производства биомассы;
  • для получения продуктов метаболизма (например, этанола, антибиотиков, органических кислот и др.);
  • для переработки органических и неорганических соединений как природного, так и антропогенного происхождения.

Главная задача первого вида процессов, которую сегодня призвано решать биотехнологическое производство - ликвидация белкового дефицита в кормах сельскохозяйственных животных и птиц, т.к. в белках растительного происхождения имеется дефицит аминокислот и, прежде всего, особо ценных, так называемых незаменимых. Основным направлением второй группы биотехнологических процессов в настоящее время является получение продуктов микробного синтеза с использованием отходов различных производств, включая пищевую, нефте- и деревоперерабатывающую промышленности и т.д.

  • Биотехнологическая переработка различных химических соединений направлена, главным образом, на обеспечение экологического равновесия в природе, переработку отходов деятельности человечества и максимальное снижение негативного антропогенного воздействия на природу. В промышленном масштабе биотехнология представляет индустрию, в которой можно выделить следующие отрасли:
  • производство полимеров и сырья для текстильной промышленности;
  • получение метанола, этанола, биогаза, водорода и использование их в энергетике и химической промышленности;
  • производство белка, аминокислот, витаминов, ферментов и т.д. путем крупномасштабного выращивания дрожжей, водорослей, бактерий;
  • увеличение продуктивности сельскохозяйственных растений и животных;
  • получение гербицидов и биоинсектицидов;
  • широкое внедрение методов генной инженерии при получении новых пород животных, сортов растений и выращивания тканевых  клеточных культур растительного и животного происхождения;
  • переработка производственных и хозяйственных отходов, сточных вод, изготовление компостов с применением микроорганизмов;
  • утилизация вредных выбросов нефти, химикатов, загрязняющих почву и воду;
  • производство лечебно-профилактических и диагностических препаратов (вакцин, сывороток, антигенов, аллергенов, интерферонов, антибиотиков и др.).

Практически все биотехнологические процессы тесно связаны с жизнедеятельностью различных групп микроорганизмов - бактерий, вирусов, дрожжей, микроскопических грибов и т.п., и имеют ряд характерных особенностей:

  1. Процесс микробного синтеза, как правило, является частью многостадийного производства, причем целевой продукт стадии биосинтеза часто не является товарным и подлежит дальнейшей переработке.
  2. При культивировании микроорганизмов обычно необходимо поддерживать асептические условия, что требует стерилизации оборудования, коммуникаций, сырья и др.
  3. Культивирование микроорганизмов осуществляют в гетерогенных системах, физико-химические свойства которых в ходе процесса могут существенно изменяться.
  4. Технологический процесс характеризуется высокой вариабельностью из-за наличия в системе биологического объекта, т.е. популяции микроорганизмов.
  5. Сложность и многофакторность механизмов регуляции роста микроорганизмов и биосинтеза продуктов метаболизма.
  6. Сложность и в большинстве случаев отсутствие информации о качественном и количественном составе производственных питательных сред.
  7. Относительно низкие концентрации целевых продуктов.
  8. Способность процесса к саморегулированию.
  9. Условия, оптимальные для роста микроорганизмов и для биосинтеза целевых продуктов, не всегда совпадают.

Микроорганизмы потребляют из окружающей среды вещества, растут, размножаются, выделяют жидкие и газообразные продукты метаболизма, тем самым реализуя те изменения в системе (накопление биомассы или продуктов метаболизма, потребление загрязняющих веществ), ради которых проводят процесс культивирования. Следовательно, микроорганизм можно рассматривать как центральный элемент биотехнологической системы, определяющий эффективность ее функционирования.

 

Биотехнология и животноводство.

Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых вакцин и генноинженерных вакцин-антигенов, ранней диагностике этих заболеваний с помощью моноклональных антител и ДНК/РНК-проб. Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов - бактерий, грибов, дрожжей, водорослей. Богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет получить 0,4- 0,6 т свинины, до 1,5 т мяса птиц, 25-30 тыс. яиц и сэкономить 5-7 т зерна (Р. С. Рычков, 1982). Это имеет большое народнохозяйственное значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице. Одноклеточные организмы характеризуются высоким содержанием белка - от 40 до 80% и более. Белок одноклеточных богат лизином, незаменимой аминокислотой, определяющей его кормовую ценность. Добавка биомассы одноклеточных к недостаточным по лизину растительным кормам позволяет приблизить их аминокислотный состав к оптимальному. Недостатком биомассы одноклеточных является нехватка серусодержащих аминокислот, в первую очередь метионина. У одноклеточных его приблизительно вдвое меньше, чем в рыбной муке. Этот недостаток присущ и таким традиционным белковым кормам, как соевая мука. Питательная ценность биомассы одноклеточных может быть значительно повышена добавкой синтетического метионина. Производство кормового белка на основе одноклеточных - процесс, не требующий посевных площадей, не зависящий от климатических и погодных условий. Он может быть осуществлен в непрерывном и автоматизированном режиме. В нашей стране производится биомасса одноклеточных, в особенности на базе углеводородного сырья. Достигнутые успехи не должны заслонять проблемы, возникающей при использовании углеводородов как субстратов для крупномасштабного производства белка, - ограниченность их ресурсов. Важнейшими альтернативными субстратами служит метанол, этанол, углеводы растительного происхождения, в перспективе водород. Очищенный этанол на мировом рынке стоит почти вдвое дороже метанола, но этанол отличается очень высокой эффективностью биоконверсии. Из 1 кг этанола можно получить до 880 г дрожжевой массы, а из 1 кг метанола-до 440 г. Биомасса из этанола особенно богата лизином - до 7%. Большое значение для животноводства имеет обогащение растительных кормов микробным белком. Для этого широко применяют твердофазные процессы. Перспективными источниками белка представляются фото-трофные микроорганизмы, в особенности цианобактерии рода Spirulina и зеленые одноклеточные водоросли из родов Chlorella и Scenedesmus. Наряду с обычными аппаратами для их выращивания используют искусственные водоемы. Добавление к растительным кормам биомассы Scenedesmus позволяет резко повысить эффективность усвоения белков животными. Таким образом, существуют разнообразные источники сырья для получения биомассы одноклеточных. Некоторые субстраты (этанол) дают столь высококачественный белок, что он может быть рекомендован в пищу. Цианобактерии рода Spirulina издавна используют в пищу ацтеки в Центральной Америке и племена, обитающие на озере Чад в Африке

 

 

 

 

 

 

 

 

 

Что такое биотехнология животных?  
 
На настоящий момент биотехнологии приобретают все более важную роль в повышении доходности животноводства. Внедрение результатов биотехнологических исследований в животноводство происходит в первую очередь в следующих областях деятельности: 
 
1. Улучшение здоровья животных с помощью биотехнологии; 
2. Новые достижения в лечении людей с помощью биотехнологических исследований на животных; 
3. Улучшение качества продуктов животноводства с помощью биотехнологии; 
4. Достижения биотехнологии в охране окружающей среды и сохранении биологического разнообразия. 
 
Биотехнология животных включает в себя работу с различными животными (скотом, домашней птицей, рыбой, насекомыми, домашними животными и лабораторными животными) и исследовательскими приемами – геномикой,генной инженерией и клонированием.

 

 

 

 

 

 

 

 

 

 

 

 

Как регулируется создание генетически модифицированных животных продуктов?  
 
В США контроль состояния здоровья сельскохозяйственных животных осуществляют три правительственных органа: Министерство сельского хозяйства США (USDA) контролирует ветеринарию, разработку и производство вакцин и диагностических тестов;  
Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) рассматривает и одобряет новые лекарственные средства и пищевые добавки; 
Управление по охране окружающей среды (EPA) обеспечивает контроль за пестицидами и другими средствами для уничтожения блох и других паразитов. Приказы регулятивных органов по поводу биотехнологии животных рассматриваются Управлением по разработке политики в области науки и техники с целью согласования деятельности правительственных органов для обеспечения рационального научного подхода. Несмотря на огромное количество разрабатываемых продуктов, регуляторных документов в печатном виде существует не так много. В 2003 году Центр ветеринарной медицины FDA опубликовал предварительную версию руководства по оценке риска при клонировании скота и безопасности употребления пищевых продуктов, произведенных из мяса клонированных животных. Специалисты FDA пришли к выводу о пригодности мяса и молока клонированных животных к употреблению в пищу. Следующим шагом является полное урегулирование вопросов по оценке риска и предложений по процессу управления рисками. 
 
 
 
Биотехнология для улучшения здоровья животных  
 
На сегодняшний день, по оценкам специалистов, рынок биотехнологических ветеринарных средств составляет 2,8 миллиардов долларов США. Ожидается, что в 2005 году эта цифра возрастет до 5,1 миллиардов. На июль 2003 года на фармакологическом рынке было зарегистрировано 111 биотехнологических ветеринарных продуктов, в том числе убитых бактериальных и вирусных вакцин. Ежегодно ветеринарная промышленность инвестирует в исследования и разработку новых препаратов более 400 миллионов долларов США.

Информация о работе Ветеринарная биотехнология