Геологические основы разработки нефтяных и газовых месторождений

Автор работы: Пользователь скрыл имя, 22 Марта 2013 в 20:41, контрольная работа

Описание работы

Дисциплина "Геологические основы разработки нефтяных и газовых месторождений" базируется на науке нефтегазопромысловая геология, являясь неразрывной ее составляющей. Поэтому сначала рассматриваются методологические аспекты науки нефтегазопромысловая геология, а уже во второй части более тесная ее связь с задачами разработки залежей углеводородов.

Файлы: 1 файл

ГЕОЛОГИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ.doc

— 766.00 Кб (Скачать файл)

 

 

 

В геолого-промысловой практике принято называть залежи первого вида залежами с нормальным пластовым давлением, второго вида — залежами с аномальным пластовым давлением. Подобное разделение следует считать условным, так как любое значение начального пластового давления связано с геологическими особенностями района и для рассматриваемых геологических условий является нормальным.

 

Залежи  с начальным пластовым давлением, соответствующим гидростатическому.

 

Гидростатическим  пластовым давлением (ГПД) называют давление в пласте-коллекторе, возникающее  под действием гидростатической нагрузки вод, перемещающихся по этому  пласту в сторону его регионального  погружения.

 

В водоносном пласте начальное пластовое давление считают равным гидростатическому, когда соответствующая ему пьезометрическая высота в каждой его точке примерно соответствует глубине залегания пласта. Пластовое давление, близкое к гидростатическому, характерно для инфильтрационных водонапорных систем и приточенных к ним залежей.

 

  В пределах нефтегазовых залежей  значения начального пластового  давления и статических уровней  превышают значения этих показателей  в водоносной части пласта  при тех же абсолютных отметках  залегания пластов. Величина превышения зависит от степени различий плотности пластовой воды, нефти и газа и от расстояния по вертикали от рассматриваемых точек залежи до ВНК.

 

Разницу между пластовым давлением и  гидростатическим (при Рв = 1) на одной  абсолютной отметке пласта принято  называть избыточным пластовым давлением Ризб.

 

В инфильтрационных системах вертикальный градиент пластового давления залежей нефти и газа, даже с учетом избыточного давления, обычно не выходит за пределы 0,008—0,013 МПа/м. Верхний предел обычен для  газовых залежей большой высоты. Иногда в свободной части газовой залежи, приуроченной к инфильтрационной системе, значение градиента может выходить за названный предел. Повышенное пластовое давление в сводовых частях залежей инфильтрационных водонапорных систем не следует смешивать со сверхгидростатическим давлением.

 

О соответствии или несоответствии пластового давления гидростатическому (т.е. глубине залегания  пласта) следует судить по значению давления в водоносной части пласта, непосредственно у границ залежи, или, если замеров давления здесь нет, по значению давления, замеренного в пределах залежи и приведенного к горизонтальной плоскости, соответствующей средней отметке ВНК или ГВК.

 

Залежи  с начальным пластовым давлением, отличающимся от гидростатического.

 

Начальное пластовое давление в водоносных пластах, а также на ВНК и ГВК залежей, вертикальный градиент которого выходит за пределы значений этого показателя, характерных для пластового давления, соответствующего гидростатическому, называется давлением, отличающимся от гидростатического. При gradp > 0,013 пластовое давление обычно считают сверхгидростатическим (СГПД), при gradp < 0,008 — меньшим гидростатического (МГПД).

 

Наличие в пластах-коллекторах СГПД можно  объяснить тем, что на определенном этапе геологической истории резервуар получает повышенное количество жидкости в связи с превышением скорости ее поступления над скоростью оттока. Сверхгидростатическое пластовое давление характерно для элизионных водонапорных систем. В таких системах напор создается за счет выжимания вод из вмещающих пласты-коллекторы уплотняющихся осадков и пород и частично за счет уплотнения самого коллектора под влиянием геостатического давления, возрастающего в процессе осадконакопления (геостатические элизионные системы), или в результате геодинамического давления при тектонических напряжениях (геодинамические элизионные системы).

 

В элизионной системе областью питания является наиболее погруженная часть пласта-коллектора. Отсюда вода, поступившая в нее, перемещается в направлении восстания пласта к областям разгрузки, когда имеется связь пласта-коллектора с земной поверхностью, или к границам распространения пласта-коллектора, если такой связи нет. В первом случае принято называть элизионные системы полузакрытыми, во втором — закрытыми. Вместе с водами, выжимаемыми из породы-коллектора, последним передается часть геостатического давления. При этом пластовое давление повышается по сравнению с нормальным гидростатическим Рпл.г на величину Рдоп.

 

Рпл= Рпл.г+ Рдоп.

 

где

 

Рдоп.=Vдоп/bв×Vв

 

Vдоп.- превышение количества поступающей в пласт-коллектор воды над количеством ее, удаляющимся в область разгрузки; bв— коэффициент сжимаемости воды; Vв — общий объем воды в пласте-коллекторе.

 

С увеличением  закрытости водонапорной системы и  объемов выжимаемой в нее воды Рдоп возрастает и СГПД приближается по величине к геостатическому давлению. СГПД наиболее характерно для пластов, залегающих на больших глубинах между мощными толщами глинистых пород, в межсолевых и подсолевых отложениях.

 

Образование СГПД связывают также с уплотнением пород-коллекторов в результате цементации, с освобождением дополнительного объема воды при переходе монтмориллонита в иллит, с тепловым расширением воды и другими процессами, протекающими в недрах земли. СГПД, являющееся следствием тектонических напряжений, может быть свойственно пластам-коллекторам в пределах локальных тектонических СГПД или даже отдельных тектонических блоков.

 

СГПД характерно для районов с повышенной неотектонической активностью и соответственно с  высокой скоростью осадкообразования — для Северного Кавказа, Азербайджана, Средней Азии, Предкарпатья. В этих районах СГПД встречается и на малых глубинах. Градиент СГПД может достигать 0,017-0,025 МПа/м и более.

 

В пределах элизионных водонапорных систем давление в гипсометрически высоких частях залежей нефти и газа, так же как и в пределах инфильтрационных систем, несколько повышено за счет избыточного давления.

 

Пластовое давление, меньшее гидростатического, т.е. с  вертикальным градиентом менее 0,008 МПа/м  встречается относительно редко. Наличие в пластах-коллекторах МГПД может быть объяснено тем, что на определенном этапе геологической истории создавались условия, приводящие к дефициту пластовой воды в резервуаре. Одним из таких условий может быть увеличение пористости, например при выщелачивании или перекристаллизации пород. Возможно также уменьшение объема жидкости, насыщающей пустотное пространство, например вследствие снижения температуры пластов-коллекторов в результате их перемещения при тектонических движениях на меньшие глубины.

 

Роль начального пластового давления.

 

Начальное пластовое  давление залежи во многом определяет природную энергетическую характеристику залежи, выбор и реализацию системы  ее разработки, закономерности изменения  параметров залежи при ее эксплуатации, особенности годовой добычи нефти и газа.

 

Начальное пластовое  давление в значительной мере определяет природное фазовое состояние  УВ в недрах и, следовательно, также  обусловливает определение рациональных условий разработки.

 

Значение  начального пластового давления залежи необходимо учитывать при оценке по керну значений пористости и проницаемости пластов в их естественном залегании. Указанные параметры, определенные по керну в поверхностных условиях, могут быть существенно завышены, что приведет к неправильному определению емкости резервуара и запасов УВ.

 

Знание  значения начального пластового давления залежей и всех вышележащих пластов-коллекторов  необходимо при обосновании технологии бурения и конструкции скважин. При этом следует исходить из двух основных требований: обеспечения нормальной проходки ствола скважины (без поглощений промывочной жидкости, выбросов, обвалов, прихватов труб) и повышения степени совершенства вскрытия

 

пластов (минимального "загрязнения" продуктивных пластов промывочной жидкостью), т.е. предотвращения снижения производительности пласта по сравнению с его природными возможностями.

 

Природа пластового давления в залежи в значительной мере предопределяет изменение пластового давления в процессе разработки. Соответствие пластового давления гидростатическому  может служить показателем приуроченности залежи к инфильтрационной водонапорной системе. В этих условиях можно ожидать, что в процессе разработки залежи пластовое давление будет снижаться относительно замедленно. СГПД свидетельствует о замкнутости элизионной водонапорной системы. Снижение пластового давления в залежах с СГПД происходит быстрее, темпы его падения возрастают с уменьшением размеров водонапорных систем. Таким образом, по значению начального пластового давления можно прогнозировать закономерности падения пластового давления в залежи при ее разработке, что позволяет обоснованно решать вопросы о целесообразности применения методов искусственного воздействия на пласты и о времени начала воздействия.

 

При составлении первого проектного документа на разработку значение начального пластового давления используют для определения уровней добычи в начальный период разработки залежи.

3.2  ТЕМПЕРАТУРА ПЛАСТА

 

Знание  пластовой температуры необходимо для изучения свойств пластовых  нефти, газа и воды (при проектировании, осуществлении и анализе разработки пласта), определения режима пласта и динамики движения подземных вод, установления условий формирования залежей нефти и газа и размещения этих залежей в пределах различных структур, а также для изучения теплового поля земной коры (при геофизических исследованиях). Оно оказывает большую помощь и при решении различных технических вопросов, связанных с тампонажем скважин, перфорацией и т. п.

 

Замеры  температур в скважинах производят либо максимальным термометром, либо электротермометром.

 

Замеры температуры можно производить в скважинах, закрепленных обсадными трубами и не закрепленными ими. Перед замером скважина должна быть оставлена в покое на 20—25сут для того, чтобы в ней восстановился нарушенный бурением или эксплуатацией естественный температурный режим. Однако в промысловых условиях нередко приступают к замерам по истечении всего лишь 4—6 ч после остановки скважины. В процессе бурения температуру обычно замеряют в скважинах, временно остановленные по техническим причинам.

 

В эксплуатационных скважинах замеры температуры производят после подъема насоса; эти замеры оказываются надежными лишь для интервала глубин залегания продуктивного (эксплуатационного) пласта. Для получения надежных температурных данных в других интервалах пласта скважину необходимо заполнить глинистым раствором и остановить на более или менее длительный срок (иногда на 20 сут). Для этой цели . удобнее использовать бездействующие или временно законсервированные эксплуатационные скважины. При замерах температуры следует учитывать проявления газа и связанное с этим возможное понижение естественной температуры.

 

Данные  замеров температур могут быть использованы для определения геотермической ступени и геотермического градиента.

 

Геотермическую  ступень, т. е. расстояние в метрах, при углублении на которое температура пород закономерно повышается на 1 °С, определяют по формуле

 

 

 

где G—геотермическая ступень, м/°С; Н—глубина  места замера температуры, м; h—глубина слоя с постоянной температурой, м; Т—-температура на глубине °С; t—средняя годовая температура воздуха на поверхности, oС.

 

Для более точной характеристики геотермической ступени необходимо иметь замеры температуры по всему стволу скважины. Такие данные позволяют вычислить  величину геотермической ступени в  различных интервалах разреза, а также определить геотермический градиент, т. е. прирост температуры в °С при углублении на каждые 100 м. Величина геотермического градиента (Г) равна

 

 

 

следовательно, зависимость между геотермической ступенью и геотермическим градиентом выражается соотношением

 

 

 

Как уже указывалось, данные термических  исследований могут быть широко использованы для изучения не только разрезов скважин  и выявления в них нефтеносных, газоносных и водоносных пластов, но и геологического строения нефтяного месторождения в целом.

 

В. М. Николаев указывает на возможность  использования геотермических данных для прослеживания за динамикой  под земных вод и направлением их стока.

 

Г. М. Сухарев составил карту геоизотерм по III группе песчаников чокракского  горизонта для Терско-Дагестанской нефтегазоносной области с целью использования ее для прогнозо1 нефтегазоносности недр. Он установил, что в зонах затрудненного водообмена величина геотермической ступени в водоносною комплексе зависит от его гипсометрического положения. Если водоносный комплекс имеет низкую отметку, то величина геотермической ступени будет наименьшей и, наоборот. В зонах слабого движения вод, т.е. практически при отсутствии водообмена, геотермическая ступень является нормальной. В зонах ослабленного движения вод, связанного с литологическими или структурными условиями, величина геотермической ступени является промежуточной между ее величинами в зонах затрудненного водообмена и в зонах отсутствия водообмена. По карте геоизотерм можно судить о затухании подземного стока вследствие ухудшения проницаемости песчаников, а также наблюдать за динамикой и направлением движения подземных вод и т. п.

 

Величина  геотермического градиента возрастает в антиклинальных зонах и уменьшается  в синклинальных. Таким образом, антиклинали являются зонами повышенной температуры, а синклинали—зонами пониженной температуры.

 

Для верхних слоев земной коры (10—20 км) величина геотермической ступени в  среднем равна 33 м/°С и колеблется в значительных пределах для различных  участков земного шара. Как уже отмечалось, физическое состояние и свойства нефти (вязкость, поверхностное натяжение, способность поглощать газ) резко меняются с изменением температуры, а следовательно, изменяется и способность нефти двигаться по пласту к забоям скважин.

3.3. ПРИРОДНЫЕ РЕЖИМЫ ЗАЛЕЖЕЙ НЕФТИ  И ГАЗА

 

Природным режимом залежи называют совокупность естественных сил (видов энергии), которые  обеспечивают перемещение нефти  или газа в пласте к забоям добывающих скважин.

 

В нефтяных залежах к основным силам, перемещающим нефть в пластах, относятся:

 

—    напор контурной воды под действием  ее массы;

 

—    напор контурной воды в результате упругого расширения породы и воды;

Информация о работе Геологические основы разработки нефтяных и газовых месторождений