Геологические процессы и документы

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 14:14, реферат

Описание работы

Что понимается под геологическим процессом? Это физико-химические процессы, происходящие внутри Земли или на ее поверхности и ведущие к изменению ее состава и строения.
Традиционно все геологические процессы принято делить на эндогенные и экзогенные. Деление это производится по месту проявления и по источнику энергии этих процессов.

Файлы: 16 файлов

Аттестация ПАТ Ц-8.doc

— 47.00 Кб (Просмотреть файл, Скачать файл)

Вопросники для оператора пульта управления 2011.doc

— 138.00 Кб (Просмотреть файл, Скачать файл)

Вопросы для аттестации операторов пульта управления в цехах добычи нафти и газа от ЦДНГ-3.doc

— 41.00 Кб (Просмотреть файл, Скачать файл)

вопросы для ПАТ от ЦДНГ-9.doc

— 42.00 Кб (Просмотреть файл, Скачать файл)

Вопросы для ПАТ.doc

— 61.00 Кб (Просмотреть файл, Скачать файл)

Вопросы ПАТ Ц-2.doc

— 43.50 Кб (Просмотреть файл, Скачать файл)

План стажировки в ЦДНГ-7 Ефимовой Н.П..doc

— 44.00 Кб (Просмотреть файл, Скачать файл)

Темы для формирования вопросов к аттестации от ЦДНГ-4.doc

— 38.50 Кб (Просмотреть файл, Скачать файл)

Геология.doc

— 605.50 Кб (Просмотреть файл, Скачать файл)

Исследование скважин.doc

— 471.50 Кб (Просмотреть файл, Скачать файл)

Источники пластовой энергии.doc

— 212.50 Кб (Просмотреть файл, Скачать файл)

Насосная эксплуатация скважин.doc

— 2.95 Мб (Скачать файл)

Пульсация вызывает преждевременное  прекращение фонтанирования в результате кратковременного увеличения плотности  столба жидкости в НКТ, его дегазации  и увеличения давления на забое. Большой  объем межтрубного пространства способствует накоплению в нем большого объема газа, который при условии Рс < Рнас периодически прорывается через башмак НКТ до полной продувки фонтанных труб. Давление на забое понижается. После этого скважина длительное время работает на накопление жидкости.

Наличие малого (несколько мм) отверстия на некоторой высоте (30 - 40 м) от башмака НКТ обеспечивает сравнительно стабильное поступление газа из межтрубного пространства в НКТ, не допуская прорыва этого газа через башмак. После того как накапливающийся газ оттеснит уровень жидкости ниже отверстия, он начинает поступать в НКТ, и пульсация гасится. Если перепад давления в отверстии Δр, то уровень жидкости будет поддерживаться ниже отверстия на глубине a = ΔР·ρ·g. Аналогичную роль выполняет рабочий клапан, в котором при превышении давления сверх установленной величины срабатывает подпружиненный клапан и перепускает газ из межтрубного пространства в НКТ.

8.8.3. Борьба с песчаными пробками

При малой скорости восходящего  потока, особенно в интервале между  забоем и башмаком НКТ, и при эксплуатации неустойчивых песчаных коллекторов на забое накапливается песок - образуется песчаная пробка, снижающая приток или вообще останавливающая фонтанирование. Борьба с этим явлением ведется посредством спуска башмака НКТ до нижних перфорационных отверстий или периодической промывкой скважины, при которой песчаная пробка размывается и уносится на поверхность потоком промывочной жидкости. Промывка осуществляется промывочным насосным агрегатом. С увеличением глубин добывающих скважин, вскрытием глубоких и плотных коллекторов пескопроявления стали довольно редким явлением, однако в некоторых южных районах (Краснодар, Баку, Туркмения) они еще вызывают осложнения при эксплуатации скважин.

8.8.4. Отложение солей

Отложение солей на стенках НКТ  подземного оборудования и даже в призабойной зоне наблюдается на некоторых месторождениях нефти при закачке в пласт пресной воды для ППД.

Основным наполнителем выпадающих солей является гипс. Причины выпадения  солей состоят в нарушении  термодинамического равновесия солевого состава пластовой воды и пресной воды, нагнетаемой в пласт. При движении по пласту нагнетаемая вода смешивается со связанной пластовой водой, вымывает соли из твердого скелета пласта и при поступлении на забой добывающей скважины смешивается там с водами других пропластков, еще не обводненных нагнетаемой водой. Возникают условия химической несовместимости, результатом которой является выпадение из раствора солей. Однако гипсообразование, которое возникает после закачки пресной воды, детально не изучено. Структура, состав отложений и условия их возникновения на разных месторождениях различны. Поэтому и меры борьбы также многообразны. Основными методами борьбы с образовавшимися солевыми отложениями являются химические методы, т. е. применение различных растворителей с последующим удалением продуктов реакции. Солевые отложения образуются не только в фонтанных трубах, но и в системе сбора и подготовки нефти, и газа на поверхности. В зависимости от солевого состава пластовых вод и интенсивности отложения солей применяют различные ингибиторы, т. е. химические добавки, полученные на основе фосфорорганических соединений. Ингибиторы вводят в поток в дозах, составляющих несколько граммов на 1 м3 пластовой жидкости. Ингибиторы позволяют удерживать в растворе ионы кальция, предотвращая его отложения. Плотные осадки удаляют растворами гидроокисей (например, каустической соды). Образующиеся при этом гидроокиси кальция представляют рыхлую массу, которая легко разрушается при действии раствора соляной кислоты. Для предотвращения выпадания солей в пласте нагнетаемые воды проверяют на химическую совместимость с пластовыми водами и их обрабатывают перед закачкой в пласт соответствующими ингибиторами.

9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН

9.1. Общие принципы газлифтной эксплуатации

Газлифтная скважина - это по существу та же фонтанная скважина, в которой  недостающий для необходимого разгазирования жидкости газ подводится с поверхности  по специальному каналу (рис. 9.1). По колонне  труб 1 газ с поверхности подается к башмаку 2, где смешивается с жидкостью, образуя ГЖС, которая поднимается на поверхность по подъемным трубам 3. Закачиваемый газ добавляется к газу, выделяющемуся из пластовой жидкости. В результате смешения газа с жидкостью образуется ГЖС такой плотности, при которой имеющегося давления на забое скважины достаточно для подъема жидкости на поверхность. Все понятия и определения, изложенные в теории движения газожидкостных смесей в вертикальных трубах, в равной мере приложимы к газлифтной эксплуатации скважин и служат ее теоретической основой.

Рис. 9.1 Принципиальная схема газлифта

 

Точка ввода газа в подъемные  трубы (башмак) погружена под уровень  жидкости на величину h; давление газа Р1 в точке его ввода в трубы  пропорционально погружению h и связано  с ним очевидным соотношением Р1 = hρg. Давление закачиваемого газа, измеренное на устье скважины, называется рабочим давлением Рp. Оно практически равно давлению у башмака Р1 и отличается от него только на величину гидростатического давления газового столба ΔР1 и потери давления на трение газа в трубе ΔР2, причем ΔР1 увеличивает давление внизу Р1, а ΔР2 уменьшает. Таким образом,

или

                                (9.1)

В реальных скважинах  ΔР1 составляет несколько процентов  от Р1, а ΔР2 еще меньше. Поэтому  рабочее давление Рр и давление у  башмака Р1 мало отличаются друг от друга. Таким образом, достаточно просто определить давление на забое работающей газлифтной скважины по ее рабочему давлению на устье.

Это упрощает процедуру  исследования газлифтной скважины, регулировку  ее работы и установление оптимального режима. Скважину, в которую закачивают газ для использования его  энергии для подъема жидкости, называют газлифтной, при закачке для той же цели воздуха - эрлифтной.

Применение воздуха  способствует образованию в НКТ  очень стойкой эмульсии, разложение которой требует ее специальной  обработки поверхностно-активными  веществами, нагрева и и дли тельного отстоя. Выделяющаяся при сепарации на поверхности газовоздушная смесь опасна в пожарном отношении, так как при определенных соотношениях образует взрывчатую смесь. Это создает необходимость выпуска отработанной газовоздушной смеси после сепарации в атмосферу.

Применение углеводородного  газа, хотя и способствует образованию  эмульсии, но такая эмульсия нестойкая  и разрушается (расслаивается) часто  простым отстоем без применения дорогостоящей обработки для  получения чистой кондиционной нефти. Это объясняется отсутствием кислорода или его незначительным содержанием в используемом углеводородном газе и химическим родством газа и нефти, имеющих общую углеводородную основу. Кислород, содержащийся в воздухе, способствует окислительным процессам и образованию на глобулах воды устойчивых оболочек, препятствующих слиянию воды, укрупнению глобул и последующему их оседанию при отстое. Вследствие своей относительной взрывобезопасности отработанный газ после сепарации собирается в систему газосбора и утилизируется. Причем отсепарированный газ газлифтной скважины при бурном перемешивании его с нефтью при движении по НКТ обогащается бензиновыми фракциями. При физической переработке такого газа на газобензиновых заводах получают нестабильный бензин и другие ценные продукты. Что касается нефти, то она стабилизируется, что уменьшает ее испарение при транспортировке и хранении.

Переработанный (осушенный) на газобензиновых заводах газ снова используется для работы газлифтных скважин после  его предварительного сжатия до необходимого давления на компрессорных станциях промысла.

Таким образом, газлифт позволяет  улучшать использование газа и эксплуатировать  месторождение более рационально  по сравнению с эрлифтом. Единственным достоинством эрлифта является неограниченность источника воздуха как рабочего агента для газожидкостного подъемника. Реальные газлифтные скважины не оборудуются по схеме, показанной на рис. 9.1, так как спуск в скважину двух параллельных рядов труб, жестко связанных внизу башмаком, практически осуществить нельзя. Эта схема приведена только лишь для пояснения принципа работы газлифта. Однако ее использование вполне возможно и в ряде случаев целесообразно для откачки больших объемов жидкости, например, из шахт или других емкостей с широким проходным сечением.

Для работы газлифтных скважин используется углеводородный газ, сжатый до давления 4 -10 МПа. Источниками сжатого газа обычно бывают либо специальные компрессорные  станции, либо компрессорные газоперерабатывающих заводов, развивающие необходимое  давление и обеспечивающие нужную подачу. Такую систему газлифтной эксплуатации называют компрессорным газлифтом. Системы, в которых для газлифта используется природный газ из чисто газовых или газоконденсатных месторождений, называют бескомпрессорным газлифтом.

При бескомпрессорном газлифте природный газ транспортируется до места расположения газлифтных скважин и обычно проходит предварительную подготовку на специальных установках, которая заключается в отделении конденсата и влаги, а иногда и в подогреве этого газа перед распределением по скважинам. Избыточное давление обычно понижается дросселированием газа через одну или несколько ступеней штуцеров. Существует система газлифтной эксплуатации, которая называется внутрискважинным газлифтом. В этих системах источником сжатого газа служит газ газоносных пластов, залегающих выше или ниже нефтенасыщенного пласта. Оба пласта вскрываются общим фильтром.

В таких случаях газоносный горизонт изолируется от нефтеносного пласта одним или двумя пакерами (сверху и снизу), и газ вводится в трубы через штуцерное устройство, дозирующее количество газа, поступающего в НКТ.

Внутрискважинный газлифт исключает  необходимость предварительной  подготовки газа, но вносит трудности  в регулировку работы газлифта. Этот способ оказался эффективным средством эксплуатации добывающих скважин на нефтяных месторождениях Тюменской области, в которых над нефтяными горизонтами залегают газонасыщенные пласты с достаточными запасами газа и давления для устойчивой и продолжительной работы газлифта.

9.2. Конструкции газлифтных подъемников

Два канала, необходимых для работы газлифтной скважины в реальных условиях, создаются двумя рядами концентрично расположенных труб, т. е. спуском  в скважину первого (внешнего) и второго (внутреннего) рядов труб. Внешний  ряд труб большего диаметра (обычно 73 - 102 мм) спускается первым. Внутренний, меньшего диаметра (обычно 48, 60, 73 мм) спускается вторым внутрь первого ряда. Образуется так называемый двухрядный подъемник, в котором, как правило, сжатый газ подается в межтрубное пространство между первым и вторым рядами труб, а ГЖС поднимается по внутреннему, второму ряду труб (рис. 9.2, а). Первый ряд труб обычно спускается до интервала перфорации, а второй под динамический уровень

Рис. 9.2. Схема конструкций газлифтных подъемников:

а - двухрядный подъемник; б - полуторарядныи подъемник; в - однорядный подъемник;

г -   однорядный подъемник с  рабочим отверстием

 

на глубину, соответствующую рабочему давлению газа, так как погружение башмака НКТ под динамический уровень, выраженное в единицах давления, всегда равно рабочему давлению газа. В газлифтной скважине, оборудованной двухрядным подъемником, реальный динамический уровень устанавливается во внешнем межтрубном пространстве - между обсадной колонной и первым рядом труб. Если межтрубное пространство перекрыто II там имеется некоторое давление газа, то действительное, а следовательно, и рабочее давление будет складываться из погружения под уровень и гидростатического давления газа во внешнем межтрубном пространстве:

пли

            (9.2)

Двухрядные подъемники раньше применялись широко, особенно когда эксплуатация скважин осложнялась  выделением песка, который нужно  было выносить на поверхность. Скорость восходящего потока при движении по первому ряду труб больше, чем  при движении по обсадной колонне. Поэтому башмак первого ряда спускался, как правило, до забоя. В то же время при необходимости можно было легко изменять погружение второго ряда труб в связи с изменением динамического уровня, увеличением отбора или по другим причинам. При таком изменении первый ряд труб остается на месте. Однако двухрядный подъемник - сооружение металлоемкое, а поэтому дорогое. Лишь при отсутствии герметичности обсадной колонны его применение оправдано как вынужденная мера. Разновидностью двухрядного подъемника является полуторарядный (рис. 9.2, б) в котором для экономии металла трубы первого ряда имеют хвостовую часть (ниже башмака второго ряда) из труб меньшего диаметра. Это существенно уменьшает металлоемкость конструкции, позволяет увеличить скорость восходящего потока, но осложняет операцию по увеличению погружения, т. е. по допуску второго ряда, так как для этого необходимо предварительно изменить подвеску первого ряда труб. Схема однорядного наименее металлоемкого подъемника приведена на рис. 9.2, в. Газ подается в межтрубное пространство и ГЖС поднимается по одному ряду труб, диаметр которых определяется дебитом скважины и техническими условиями ее эксплуатации. Реальный уровень жидкости всегда устанавливается у башмака подъемных труб. Уровень не может быть выше, так как в этом случае газ не будет поступать в НКТ. Он не может быть и ниже башмака, так как тогда в НКТ не будет поступать жидкость. Однако при пульсирующем режиме работы газожидкостного подъемника уровень жидкости колеблется у башмака, периодически его перекрывая. Видимого погружения и динамического уровня жидкости при однорядном подъемнике нет, а гидростатическое давление у башмака подъемных труб, создаваемое погружением его под динамический уровень, заменяется давлением газа Р1.

Положение динамического уровня (называемого иногда условным) как обычно определяется рабочим давлением газа pi, пересчитанным в соответствующую высоту столба жидкости (см. рис. 9.2, в). На рис. 9.2, в показан пьезометр, присоединенный к скважине. В таком пьезометре устанавливается реальный динамический уровень, соответствующий рабочему давлению. Недостатком однорядного подъемника является низкая скорость восходящего потока между забоем и башмаком, глубина спуска которого определяется рабочим давлением газа, отбором жидкости, а также коэффициентом продуктивности скважины. Однако при этом упрощается допуск труб или вообще изменение глубины их подвески, если возникает такая необходимость. Поэтому существует разновидность однорядного подъемника - подъемник с рабочим отверстием (см. рис. 9.2, г). Один ряд труб необходимого диаметра спускается до забоя (или до верхних дыр перфорации), но на расчетной глубине, т. е. на глубине, где должен быть башмак (глубина места ввода газа в НКТ), устанавливается рабочая муфта с двумя-четырьмя отверстиями диаметром 5 - 8 мм. Сечение отверстий должно обеспечить пропуск расчетного количества газа при перепаде давлений у отверстий, не превышающем 0,1 - 0,15 МПа. Перепад давления у отверстий удерживает уровень жид кости ниже отверстия на 10 - 15 м и обеспечивает более равномерное поступление газа в трубы. Однорядный подъемник с рабочим отверстием (или муфтой) создает наибольшие скорости восходящего потока, является наименее металлоемким, однако требует подъема колонны труб при необходимости изменения погружения. Положение условного динамического уровня и погружение определяются рабочим давлением газа у рабочих отверстий, пересчитанным в столб жидкости. Однорядная конструкция газлифта, при котором используются 60 или 73-мм трубы, создает широкое межтрубное пространство, размеры которого играют решающую роль в случае использования различных клапанов, широко применяемых в настоящее время. В однорядном подъемнике вместо рабочей муфты с рабочими отверстиями может применяться так называемый концевой рабочий клапан, поддерживающий постоянный перепад давления при прохождении через него газа, равный 0,1 - 0,15 МПа, достаточный для того, чтобы постоянно удерживать уровень жидкости ниже клапана на 10 - 15 м. Концевой клапан обычно приваривается к спецмуфте с внешней стороны и имеет пружинную регулировку необходимого перепада давления и расхода газа. Такой клапан снабжается еще специальным шариковым клапаном, который закрывает рабочее отверстие и позволяет осуществлять обратную промывку скважины до забоя (рис. 9.3).

Необходимо отметить, что любая конструкция газлифтного  подъемника может работать по двум схемам. В одном случае сжатый газ  подается в межтрубное пространство, а ГЖС движется по центральной  колонне труб. Эта схема обычная (см. рис. 9.2, а, б, в, г) и

Подготовка скважин к эксплуатации.doc

— 608.50 Кб (Просмотреть файл, Скачать файл)

Ремонт скважин.doc

— 216.00 Кб (Просмотреть файл, Скачать файл)

Техника и технология воздействия на залежь нефти.doc

— 637.50 Кб (Просмотреть файл, Скачать файл)

ценная информация о ...doc

— 315.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Геологические процессы и документы