Контрольная работа по дисциплине "Безопасность жизнедеятельности"

Автор работы: Пользователь скрыл имя, 23 Января 2014 в 14:01, контрольная работа

Описание работы

Охарактеризуйте основные формы деятельности человека.
Предельно допустимые концентрации пыли, газов и паров. как они устанавливаются и какими документами нормируются.
На каких принципах основаны способы измерения ионизирующих излучений.

Файлы: 1 файл

1.doc

— 134.00 Кб (Скачать файл)

Для каждого города на основании нормативов ПДВ предприятий  и фонового состава атмосферного воздуха разрабатывают общегородские нормативы ПДВ, в соответствии с которыми индивидуальные ПДВ предприятий могут быть пересмотрены в сторону уменьшения. Расчет нормативов ПДВ производится на ЭВМ по специально разработанным программам, утверждаемый Министерством охраны окружающей среды и ядерной безопасности Украины.

Соблюдение установленных  нормативов качества обеспечивает благоприятную  экологическую обстановку в регионе  в соответствии с требованиями закона Украины об окружающей среде.

ПДВ устанавливается  для каждого стационарного источника из расчета, что совокупный выброс от всех источников загрязнения атмосферного воздуха с учетом перспективы развития не приведет к превышению нормативов ПДК в приземном слое. ПДВ устанавливается для условий полной нагрузки технологического  и газоочистного оборудования и их нормальной работы. ПДВ не должен превышаться в любой  20 минутный период времени. Для мелких источников целесообразно установление ПДВ от их совокупности с предварительный объединением их в площадной или точечный источник. ПДВ определяется для каждого вещества отдельно, в том числе и в случае суммации вредного воздействия нескольких веществ.

По результатам расчета  нормативов ПДВ для каждого стационарного  источника выбросов устанавливается  предельный выброс предприятий в целом. ПДВ устанавливают с учетом фоновых концентраций энергетически достоверной максимальной концентрации. Она является характеристикой загрязнения атмосферы и определяется как значение концентрации, которая превышается не более чем в 6% случаев от общего количества наблюдений. Фоновая концентрация характеризует суммарную концентрацию, создаваемую всеми источниками, расположенными на данной территории.

Установлению ПДВ для  источника предшествует определение  его зоны влияния. Для предприятий  и источников, зоны влияния которых целиком расположены в пределах города, где суммарная концентрация от всех источников меньше ПДК. Значение   выбросов, используемых при расчетах, принимаются в качестве ПДВ.

Для получения информации про состояние воздушного бассейна создана сеть пунктов и станций контроля. Регулярно проводится инвентаризация выбросов – учет основных источников загрязнения атмосферы, количества и состава выбросов.

Ограничение концентрации и выбросов вредных веществ –  первый шаг к воплощению задуманной цели в реальность.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 НА КАКИХ ПРИНЦИПАХ ОСНОВАНЫ СПОСОБЫ ИЗМЕРЕНИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ.

 

Ионизирующее излучение (проникающая радиация) — поток  гамма лучей и нейтронов из зоны ядерного взрыва. За единицу измерения излучения (экспозиционной дозы) принят кулон на 1 кг (Кл/кг) в единицах СИ. В практике в качестве единицы экспозиционной дозы излучения часто пользуются внесистемной единицей рентген (Р). Поглощенная доза, т. е. доза ионизирующих излучении, поглощенная тканями организма, измеряется в радах или Греях (Гр)2 в единицах СИ. 1 рад приблизительно ранен 1 Р.

Наличие радиоактивных осадков  на местности, а также ФОВ (фосфорорганическое отравляющее вещество), нельзя обнаружить визуально или органолептически и заражение (поражение) может произойти незаметно для человека; для своевременного и быстрого их обнаружения в воздухе, на местности, различных предметах и различных средах созданы специальные приборы радиационной и химической разведки, контроля полученных доз облучения и степени заражения.

Для правильного использования  приборов радиационной разведки и контроля облучения людей, а также получения  необходимой точности измерения  нужно знать характеристики ионизирующих излучений, которые они регистрируют, а также принципы, на основе которых работают эти приборы.

Работа дозиметрических  приборов основана на способности излучений  ионизировать вещество среды, в которой  они распространяются. Ионизация  в свою очередь является причиной некоторых физических и химических изменении в веществе, которые могут быть обнаружены и измерены. К таким изменениям относятся: увеличение электропроводности (газов, жидкостей, твердых материалов); люминесценция (свечение); засвечивание светочувствительных материалов (фотопленок); изменение цвета, окраски, прозрачности некоторых химических растворов.

В зависимости от природы  регистрируемого физико-химического  явления, происходящего в среде  под воздействием ионизирующего  излучения, различают ионизационный, химический, сцинтилляционный, фотографический  и другие методы обнаружения и  измерения ионизирующих излучений.

Ионизационный метод  основан на явлении ионизации  молекул, которая происходит под  воздействием ионизирующих излучений  в среде (газовом объеме), в результате чего электропроводность среды увеличивается, что может быть зафиксировано  соответствующими электронно-техническими устройствами. Ионизационный метод положен в основу принципа работы таких приборов, как ДП-5А (ДП-5Б), ДП-ЗБ, ДП-22В н ИД-1.

Приборы, работающие на основе ионизационного метода, имеют принципиально  одинаковое устройство и включают: воспринимающее устройство (ионизационная камера), электрическую схему (усилитель ионизационного тока), регистрирующее устройство (микроамперметр), источник питания (сухие элементы).

Химический метод основан  на способности молекул некоторых  веществ в результате воздействия ионизирующих излучении распадаться, образуя новые химические соединения. Так, хлороформ в воде при облучении разлагается с образованием хлороводородной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основано устройство химических дозиметров ДП-70 и ДП-70М.

Сцинтилляционный метод измерения ионизирующих излучений основан на том, что некоторые вещества (сульфит цинка, иодид натрия) светятся при воздействии на них, ионизирующих излучений. Количество световых вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов — фотоэлектронных умножителей. На этом принципе основано действие индивидуального измерителя дозы ИД-11.

Фотографический метод  основан на способности молекул  бромида серебра, содержащегося  в фотоэмульсии, распадаться на серебро  и бром под воздействием ионизирующих излучений. При этом образуются мельчайшие кристаллики серебра, которые вызывают почернение фотопленки при ее проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой.

 Для определения и учета величин, характеризующих ионизирующие излучения, введены понятия доз облучения и некоторых единиц измерения: экспозиционные дозы излучений, поглощенная доза, эквивалентная доза.

Экспозиционная доза рентгеновского и гамма-излучений –количественная характеристика излучения, основанная на способности излучений ионизировать воздух. За единицу экспозиционной дозы в единицах СИ принята такая доза, при которой в 1 кг сухого воздуха образуются ионы, несущие заряд в 1 Кл электричества каждого знака. По сегодняшний день на практике широко применяется внесистемная единица для экспозиционной дозы – рентген (Р). 1 Р соответствует излучению, при котором в 1 см3 сухого воздуха образуется 1 единица заряда в системе единиц СГС, или, что то же самое— 2.08 * 109 пар ионов. 1 Р = 2,58*10-4 Кл/кг.

Для количественного  измерения дозы излучения любого вида (включая рентгеновское и  гамма-излучения) используется так  называемая поглощенная доза-энергия  излучения, поглощенная единицей массы  облучаемой среды. В СИ единицей поглощенной дозы является грей (Гр), равный 1 Дж/кг. Ранее используемая внесистемная единица поглощенной дозы рад равна 0,01 Гр.

Поскольку различные  виды ионизирующих излучений при  одной и той же поглощенной  дозе вызывают различные по тяжести  поражения живой ткани, введено понятие о биологической (эквивалентной) дозе, единицей которой в СИ является зиверт (Зв) – такая поглощенная доза любого излучения, которая при хроническом облучении вызывает такой же биологический эффект, как 1 Гр поглощенной дозы рентгеновского или гамма-излучения. На практике встречается внесистемная единица эквивалентной дозы – бэр (биологический эквивалент рентгена), равная 0,01 Зв.

Скорость набора дозы ионизирующих излучений характеризуется  мощностью дозы, определяемой как  отношение величины набранной дозы ко времени, за которое она была получена:

P=D/T

где Р–мощность дозы ионизирующих излучений, Р/ч;

D – суммарная доза облучения, Р;

Т– время облучения, ч.

Единицей мощности поглощенной  дозы в единицах СИ является 1 Гр/с, эквивалентной дозы – 1 Зв/с, экспозиционной дозы – 1 Кл/кг-с=1 А/кг. В практике дозиметрии широко применяются внесистемные единицы мощности дозы – 1 Р/ч, 1 Гр/ч, 1 мкР/с, 1 Р/год и другие единицы, образованные аналогичным образом.

Мерой количества радиоактивного вещества, выражаемой числом радиоактивных превращений в единицу времени, является активность. В СИ за единицу активности принято 1 ядерное превращение в секунду (расп./с). Эта единица получила название Беккерель (Бк). Внесистемной единицей измерения активности является кюри (Ки). Кюри –это активность такого количества вещества, в котором происходит 3,7-1010 актов распада в 1с (3,7-1010 Бк). 1 Ки соответствует активности 1 г радия.

 

 

 

 

 

 

 

 

ЯДЕРНОЕ ОРУЖИЕ. ЕГО ПОРАЖАЮЩИЕ ФАКТОРЫ.

 

Ядерное оружие – оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа  получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление – синтез – деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного боеприпаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления  конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза – от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей  применения ядерного оружия ядерные  взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Основными поражающими  факторами ядерного взрыва являются: ударная волна, световое излучение  ядерного взрыва, проникающая радиация, радиоактивное заражение местности  и электромагнитный импульс.

Ударная волна (УВ) – область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают  их до больших давлений и плотности  и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй – за 4 с; пятый – за 12 с.

Поражающее воздействие  УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей  может быть непосредственным и косвенным. При непосредственном воздействии  причиной травм является мгновенное повышение давления воздуха, что  воспринимается как резкий удар, ведущий  к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Информация о работе Контрольная работа по дисциплине "Безопасность жизнедеятельности"