Радионуклиды в строительных материалах

Автор работы: Пользователь скрыл имя, 14 Января 2015 в 15:50, реферат

Описание работы

Удельная активность радионуклидов в камне. Мощность излучения различных источников радона. Уровень концентрации радона и ДПР в атмосфере домов. Контроль радиационной безопасности строительных материалов на территории России.

Содержание работы

Введение
Радионуклиды в строительных материалах
Радон в зданиях
Требования ГОСТ и НРБ-99 к содержанию радионуклидов в строительных материалах
Меры по снижению содержания естественных радиоактивных элементов в строительных матеалах
Заключение
Список литературы

Файлы: 1 файл

300_ign.docx

— 265.71 Кб (Скачать файл)

Радон и торон присутствуют, как и его материнские нуклиды, во всех строительных материалах и горных породах. Образующийся в процессе распада инертный газ тотчас же диффундирует через капилляры грунта, микротрещины горных пород, захватывается потоками других газов и, несмотря на ограниченное время жизни, может транспортироваться на значительные расстояния в земной коре и земной атмосфере. Причем естественная убыль этих газов за счет выделения из материалов (процессы эманации - выделения из кристаллической решетки и эксхаляции - испарение или выделение с поверхности) и естественного распада постоянно компенсируется за счет распада радия и тория, присутствующих в данном материале.

Радон хорошо растворяется в воде, поэтому он содержится во всех природных водах, причем в глубинных грунтовых водах его, как правило, заметно больше, чем в поверхностных водостоках и водоемах. Например, в подземных водах его концентрация может изменяться от 4-5 Бк/л до 3-4 МБк/л, то есть в миллион раз. В водах озер и рек концентрация радона редко превышает 0,5 Бк/л, а в водах морей и океанов - не более 0,05 Бк/л. Радон попадает из вод в атмосферу за счет процессов эксхаляции-дегазации с выносом радона из воздушных пузырьков, содержащихся в воде, в атмосферу. Наиболее интенсивно этот процесс происходит при разбрызгивании, испарении и кипении воды.

Процессы эксхаляции повинны и в появлении радона в помещениях за счет выхода его из строительных материалов. При этом количество радона, поступающего в воздух, определяется не только содержанием радия (урана, тория) в материалах, но и величиной коэффициента эманирования, определяющего долю радона, поступающего в атмосферу, от общего количества радона, генерируемого в данном материале. При этом общая радиоактивность в помещении, определяемая по гамма-съемке, не всегда может характеризовать опасность радоновыделения [6].

Нередки случаи, когда здания, построенные из сравнительно слаборадиоактивных (по гамма-излучению) материалов, крайне опасны по радону за счет его высокого выделения (эманирования) из вещества строительного материала. Кроме того, многие цементы содержат повышенное содержание естественного радиоактивного изотопа калий-40, который в процессе распада генерирует только гамма-излучение и не продуцирует радиоактивные газы. В этом случае на фоне относительно повышенного гамма-излучения не будет наблюдаться повышения уровня концентрации радона. Следовательно, контроль интенсивности гамма-излучения строительных материалов посредством гамма-радиометров не гарантирует чистоты по радону для строящихся из этих материалов зданий. Опасность строительных материалов по радону необходимо контролировать непосредственно только по радону.

Третий, наиболее значимый путь накопления радона в помещениях также связан с выделением радона, но уже непосредственно из грунтов, на которых построено здание или сооружение.

Среднее содержание урана-238 на материках около 3 мкг/т. При этом результирующая активность горных пород составляет приблизительно 50 000 распадов в секунду (50 000 Бк/т), то есть, грубо говоря, каждую секунду тонна горной породы генерирует 50 000 атомов радона. Однако радон в недрах земли распространен крайне неравномерно. Это связано с тем, что радон накапливается в тектонических нарушениях, куда он поступает по системам микротрещин из горных пород. Радоновыделение же определяется как общей радиоактивностью горных пород, так и их коллекторскими свойствами (способностью аккумулировать радон) и коэффициентом эманирования (способностью выделять накопленный радон) [3, 6].

В практике геологических исследований нередки случаи, когда слаборадиоактивные породы содержат в своих пустотах и трещинах радон в количествах, в сотни и тысячи раз больших, чем более радиоактивные горные породы. При своеобразном дыхании Земли радон выделяется из горных пород в атмосферу, причем в наибольших количествах из участков Земли, в пределах которых имеются коллекторы радона. Возведение непосредственно над такими трещинными зонами зданий и сооружений приводит к тому, что в эти сооружения из недр Земли непрерывно поступает поток грунтового воздуха, содержащего высокие концентрации радона, который, накапливаясь в воздухе помещения выше предельно допустимых концентраций (ПДК), создает серьезную радиологическую опасность для проживающих в этих помещениях людей или рабочего персонала. Известны случаи, когда в производственных подвальных помещениях, снабженных вытяжной вентиляцией, за счет которой происходит подсос радона из почвы, объемная концентрация радона достигала 8000-10 000 Бк/м3, что превышало нормы в 40-50 раз [7].

Радон в зданиях

К настоящему времени в различных странах накоплена достаточно обширная информация о содержании радона в жилых и служебных помещениях. Эти данные постоянно пополняются и уточняются, поэтому представления о средних концентрациях радона в зданиях и его ПДК претерпевают изменения. Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

Уровень концентрации радона и ДПР в атмосфере домов существенно зависит от естественной и искусственной вентиляции помещения, тщательности заделки окон, стыков стен и вертикальных коммуникационных каналов, частоты проветривания помещений и т.д. Например, наиболее высокие концентрации радона в жилых зданиях отмечаются в холодный период года, когда традиционно принимают меры к утеплению помещений и уменьшению обмена воздуха с окружающей средой [4].

Однако наилучшие результаты снижения радонового риска в существующих зданиях дает правильно выполненная вентиляция. Анализ активности радона при воздухообмене показывает, что даже однократный воздухообмен за 1 час снижает концентрацию радона практически на два порядка [1].

Как указывалось ранее, при прочих равных условиях (конструкция, этажность домов, строительный материал и т.п.) концентрация радона в помещениях прямо связана с его концентрацией в грунтах под домами. Последняя определяется содержанием в них радия, а также физическими параметрами грунта: плотностью, пористостью, коэффициентом эманирования.

Содержание свободного радона существенно зависит от всех указанных параметров горных пород и может изменяться в широких пределах. В приповерхностных условиях концентрация радона в грунтах заметно снижается по сравнению с табличными значениями за счет выхода радона в атмосферу.

В процессе тектонической деятельности повышается пористость горных пород, образуются системы разнонаправленных трещин, полостей. Поэтому тектонические зоны приобретают хорошие коллекторские свойства, в них происходит накопление радона, повышается коэффициент эманирования. Как результат - большая часть тектонических нарушений превращается в радононосные подводящие структуры. Если над такими структурами располагаются постройки, вероятность накопления в них ураганно-высоких концентраций радона резко повышается.

Таким образом, непосредственно связанные с земными недрами источники поступления радона представляют две группы:

1) источниками являются  сами горные породы, и радон  поступает в дома за счет  высокого геохимического фона  радона в породах (например, сланцы, граниты, сиениты). Этот повышенный  местный геохимический фон (например, при концентрации радона в  грунтах более 50-100 Бк/л) может создать  значительные по площади радононосные участки, в пределах которых концентрация радона практически повсеместно может превышать ПДК в десятки раз (до 1000 Бк/м3);

2) источником являются  радононосные тектонические зоны, которые характеризуются резко аномальными (во много раз превышающими местный геохимический фон) концентрациями радона, четко выраженными линейными размерами (как правило, ширина таких зон составляет десятки-первые сотни метров при протяженности во многие сотни и тысячи метров). Концентрация радона в атмосфере домов, располагающихся над такими зонами, может достигать ураганно-высоких значений до десятков тысяч Бк/м3.

Требования ГОСТ и НРБ-99 к содержанию радионуклидов в строительных материалах

Контроль радиационной безопасности строительных материалов на территории России проводится в соответствии с Федеральными законами «О радиационной безопасности населения» и «О санитарно-эпидемиологическом благополучии населения».

ГОСТ 30108-94 введен в действие 1 января 1995 г. Постановлением Госстроя России от 30 июня 1994 г. № 18-48.

В соответствии с данным ГОСТом, естественные радионуклиды (ЕРН) - основные радиоактивные нуклиды природного происхождения, содержащиеся в строительных материалах: радий (226Ra), торий (232Th), калий (40К);

В стандарте прописаны способы измерения удельной эффективной активности радионуклидов и в зависимости от значений, выделены классы строительных материалов.

Удельная эффективная активность ЕРН (Аэфф) - суммарная удельная активность ЕРН в материале, определяемая с учетом их биологического воздействия на организм человека

Стандарт устанавливает экспрессный и лабораторный методы определения удельной эффективной активности ЕРН в строительных материалах и изделиях

Экспрессный метод предназначен для проведения:

- периодического и входного  контроля сыпучих строительных  материалов и отходов промышленного  производства, а также строительных  изделий в соответствии с действующими  нормативными документами;

- предварительной оценки  разрабатываемых горных пород  в карьере.

Условием применения экспрессного метода является отсутствие загрязнения материалов и изделий техногенными радионуклидами.

Лабораторный метод предназначен для:

- установления класса  строительного материала (изделия);

- уточнения класса строительного  материала (изделия) в случае получения  граничных значений по экспрессному  методу;

- сертификации продукции.

В соответствии с ГОСТом, результаты определения удельной эффективной активности ЕРН в материалах заносят в журнал, в котором должны быть указаны:

- наименование материала;

- наименование предприятия-изготовителя  или предприятия-потребителя;

- местоположение точек  отбора пробы;

- даты отбора пробы  и проведения измерений;

- удельные активности  радия, калия, тория с погрешностями;

- удельная эффективная  активность с погрешностью;

- фамилия, должность и  подпись лица, проводившего измерения. [2]

После проведения испытаний определяют класс строительных материалов. По удельной эффективной активности природных радионуклидов строительные материалы делятся на 4 класса. Материалы I класса (до 370 Бк/кг) могут применяться на строительстве любых объектов, в том числе жилья, материалы II класса (до 740 Бк/кг) – в промышленном строительстве, строительстве дорог в пределах населенных пунктов. Материалы III класса (до 1500 Бк/кг) могут использоваться для строительства дорог за пределами населенных пунктов, а материалы IV класса – применяться только по специальному разрешению Федеральной службы Роспотребнадзора.

 

Таблица 7 - Критерии для принятия решения об использовании строительных материалов согласно гигиеническим нормативам [2].

 

Удельная эффективная активность (Аэфф),

 Бк/кг 

Класс материала

Область применения

До 370

I

Все виды строительства

Св. 370 до 740

II

Дорожное строительство в пределах населенных пунктов и зон перспективной застройки, строительство производств. сооружений

От 740 до 2800

III

Дорожное строительство вне населенных пунктов

Св. 2800

IV

Вопрос об использовании материала решается по согласованию с Госкомсанэпиднадзором


С введением ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов» обязательно проводятся исследования образцов строительных материалов на удельную эффективную активность естественных радионуклидов Радия-226, Тория-232 и Калия-40. Критерием оценки является удельная эффективная активность (Аэфф.), по которой устанавливается принадлежность материала к 1, 2 или 3 классу и определяются возможные области его использования. Эти характеристики указываются в гигиенических сертификатах на строительные материалы.

Нормы радиационной безопасности НРБ-99 (далее - Нормы) применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Требования и нормативы, установленные Нормами, являются обязательными для всех юридических лиц, независимо от их подчиненности и формы собственности, в результате деятельности которых возможно облучение людей, а также для администраций субъектов Российской Федерации, местных органов власти, граждан Российской Федерации, иностранных граждан и лиц без гражданства, проживающих на территории Российской Федерации.

В соответствии с НРБ-99, в стандартных условиях монофакторного поступления радионуклидов, годовое поступление радионуклидов через органы дыхания и среднегодовая объемная активность их во вдыхаемом воздухе не должны превышать числовых значений ПГП и ДОА, приведенных в приложениях к НРБ-99, где пределы доз взяты равными 20 мЗв в год для персонала и 1 мЗв в год для населения.

Информация о работе Радионуклиды в строительных материалах