Расчетно-аналитическое исследование показателей пожарной опасности веществ и прогнозирование динамики развития пожаров в помещении

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 01:55, курсовая работа

Описание работы

Комплекс мероприятий обеспечения безопасной эксплуатации потенциально опасных объектов включает в себя такие важнейшие элементы, как:
а) заблаговременное прогнозирование возможной обстановки на объекте и прилегающей территории при возникновении чрезвычайной ситуации;
б) оперативная оценка сложившейся при этом обстановки;
в) принятие мер экстренной защиты персонала и населения.

Файлы: 1 файл

поофп.doc

— 791.50 Кб (Скачать файл)

Прогнозирование химической обстановки при аварии на ХОО

 

Для заблаговременного и оперативного прогнозирования масштабов заражения на случай выбросов сильнодействующих ядовитых веществ (СДЯВ) в окружающую среду при авариях (разрушениях) на химически опасных объектах и транспорте используется РД 52.04.253-90 «Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте».

Методика позволяет осуществлять прогнозирование масштабов зон заражения при авариях на технологических емкостях и хранилищах, при транспортировке железнодорожным, трубопроводным и другими видами транспорта, а также в случае разрушения химически опасных объектов.

Рассмотрим случай аварии на ХОО, где в технологической  системе содержалось 50 т сероуглерода. Определим глубину зоны возможного заражения сероуглеродом при времени от начала аварии 1 ч и продолжительность действия источника заражения (время испарения сероуглерода).

Метеоусловия на момент аварии: скорость ветра 5 м/с, температура  воздуха 0 °С, изотермия. Разлив СДЯВ на подстилающей поверхности - свободный.

Решение

1. Так как количество  разлившегося сероуглерода неизвестно, то принимаем его равным максимальному - 50 т (согласно п.1.5 [6]).

2. По формуле (1, [6]) определяем эквивалентное количество вещества в первичном облаке: Qэ1 = 0 т.

  1. По формуле (12, [6]) определяем время испарения хлора:

4. По формуле (5, [6]) определяем эквивалентное количество вещества во вторичном облаке:

. т.

5. По приложению 2 для 0,1 т находим глубину зоны заражения для вторичного облака: Г2=0,17 км.

6. Находим полную глубину зоны заражения:

Г = 0,17 + 0,5 0 = 0,17 км.

7. По формуле (7, [6]) находим предельно возможные значения глубины переноса воздушных масс: Гп = 1 · 29 = 29 км.

Таким образом, глубина  зоны заражения сероуглеродом в результате аварии может составить 0,17 км; продолжительность действия источника заражения - около 3,2 часа.

 

 

Список литературы

 

  1. Березин Б.Д., Березин Д.Б. Курс современной органической химии. М., Высшая школа, 1999.
  2. Ким А.М. Органическая химия. Новосибирск, Сибирское университетское издательство, 2002.
  3. Мищенко К.П., Равделя А.А. Краткий справочник физико-химических величин. Л., Химия, 1974.
  4. Беззапонная О.В., Вайнтер Е.В. Основы процессов горения. Материальный и тепловой баланс процессов горения. Екатеринбург, ГОУ-ВПО УГТУ-УПИ, 2008.
  5. Врублевский А.В., Котов Г.В., Гороховик М.В. Опасные факторы чрезвычайных ситуаций природного и техногенного характера: Учебно-методическое пособие по выполнению курсовой работы. – Мн.: ЦНИИТУ, 2004.
  6. Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте. РД 52.04.253-90.
  7. Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х ч. – 2-е изд., перераб., и доп. – М.: Асс. «Пожнаука», 2004.

Информация о работе Расчетно-аналитическое исследование показателей пожарной опасности веществ и прогнозирование динамики развития пожаров в помещении