Автор работы: Пользователь скрыл имя, 08 Февраля 2014 в 11:43, реферат
Задача безопасности жизнедеятельности состоит в обеспечении нормальных (комфортных) условий деятельности людей, их жизни, в защите человека и природной среды от воздействия вредных факторов, превышающих нормативно-допустимые уровни
В зависимости от источника возникновения выделяют три категории вибрации: транспортную; транспортно-технологическую; технологическую.
Вибрацию нормируют в соответствии с ГОСТ 12.1.012–78 «ССБТ. Вибрация. Общие требования безопасности», а также в соответствии с СН №3044–84 «Санитарные нормы вибрации рабочих мест» (общая вибрация) и СН №3041–84 «Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих».
Таблица 1. Допустимые уровни общей вибрации 1 категории
Среднегеометрическая частота, f |
Допустимые значения виброскорости |
Допустимые значения виброускарения | ||||||
*10-2, м/с |
дБ |
м/с2 |
дБ | |||||
Z |
X, Y |
Z |
X, Y |
Z |
X, Y |
Z |
X, Y | |
1,0 2,0 4,0 8,0 16,0 63 |
20,0 7,1 2,5 1,3 1,1 1,1 |
6,3 3,5 3,2 3,2 3,2 3,2 |
132 123 114 108 107 107 |
122 117 116 116 116 116 |
1,12 0,8 0,56 0,56 1,12 4,5 |
0,4 0,4 0,8 1,6 3,15 12,5 |
71 68 65 65 71 83 |
62 62 68 74 80 92 |
Таблица 2. Допустимые уровни локальной вибрации
Среднегеометрическая частота, Гц |
Допустимые значения по осям Z, X, Y | |||
виброускарения |
виброскорости | |||
м/с2 |
дБ |
м/с |
дБ | |
8 16 31,5 63 125 250 500 1000 |
1,4 1,4 2,7 5,4 10,7 21,3 42,5 85,0 |
73 73 79 85 91 97 103 109 |
2,8 1,4 1,4 1,4 1,4 1,4 1,4 1,4 |
115 109 109 109 109 109 109 109 |
Для каждой из трех категорий вибрации нормируют величины виброскорости и виброускорения как в линейных (м/с и м/с2), так и в логарифмических единицах (дБ). Общая вибрация нормируется в диапазоне частот 0,8…80 Гц, а местная (локальная) – в диапазоне частот 8… 1000 Гц.
Обычно вибрация включает как горизонтальную, так и вертикальную составляющие, поэтому при ее нормировании учитывают направление действия вибрации. При этом обозначают: Z – вертикальная ось, Х иY – горизонтальные оси.
Основными методами защиты от вибрации являются:
♦ снижение вибрации в источнике ее возникновения;
♦ уменьшение параметров вибрации по пути ее распространения от источника.
Чтобы снизить вибрацию в источнике
ее возникновения, необходимо уменьшить
действующие в системе
Для защиты от вибрации используют метод вибродемпфирования (вибропоглощение), под которым понимают превращение энергии механических колебаний системы в тепловую. Это достигается использованием в конструкциях вибрирующих агрегатов специальных материалов (например, сплавов систем медь–никель, никель–титан, титан–кобальт), применением двухслойных материалов типа сталь–алюминий, сталь–медь. Хорошей вибродемп-фирующей способностью обладают пластмассы, дерево, резина. Значительный эффект достигается при нанесении на колеблющиеся детали вибропоглощающих (упруговязких) покрытий: пластмассы, резины, различных мастик. Известными вибропоглощающими мастиками являются так называемые «Антивибриты», изготавливаемые на основе эпоксидных смол.
Виброгашение, или динамическое гашение колебаний, достигается установкой вибрирующих машин и механизмов на прочные, массивные фундаменты. Массу фундамента рассчитывают таким образом, чтобы амплитуда колебаний его подошвы была в пределах 0,1…0,2 мм, а для особо важных сооружений – 0,005 мм.
Снизить вибрацию агрегата можно установкой на него динамического виброгасителя, т.е. самостоятельной колебательной сиcтемы, обладающей массой и жесткостью. При этом для вибрации защищаемого агрегата его частота колебаний и частота колебаний виброгасителя должна быть одинаковыми.
Жестко закрепленный на защищаемом агрегате виброгаситель колеблется в противофазе с основной установкой, в результате чего снижается уровень вибрации. Но так как он действует на определенной (фиксированной) частоте колебаний, то при изменении частоты колебаний основной установки резонанс между ней и виброгасителем пропадает.
Достаточно эффективным
способом защиты является виброизоляция,
которая заключается в
В качестве виброизоляторов используют пружинные опоры либо упругие прокладки из резины, пробки и т.п. Возможно использование сочетания этих устройств (комбинированные виброизоляторы).
Для уменьшения вибрации
ручного инструмента его ручки
изготавливаются с
Рассмотренные методы защиты от вибрации относятся к коллективным методам защиты. Средствами индивидуальной защиты от вибраций являются специальные рукавицы, перчатки и прокладки. Для защиты ног используют виброзащитную обувь, снабженную прокладками из упругодемпфирующих материалов (пластмассы, резины или войлока). С целью профилактики вибрационной болезни персонала, работающего с вибрирующим оборудованием, необходимо строго соблюдать режимы труда и отдыха, чередуя при этом рабочие операции, связанные с воздействием вибрации, и без нее.
Не менее опасным фактором может стать воздействие шума, ультра- и инфразвуков.
Шум – это сочетание звуков различной частоты и интенсивности. С физиологической точки зрения шумом называют любой нежелательный звук, оказывающий вредное воздействие на организм человека.
Шум в городской среде и жилых зданиях создается транспортными средствами, промышленным оборудованием, санитарно-тех-ническими установками и устройствами. На городских магистралях и в прилегающих к ним зонах уровни звука могут достигать 90 дБА и более. В районе аэропортов уровни звука еще выше.
Звуковые колебания, воспринимаемые органами слуха, являются механическими колебаниями, распространяющимися в упругой среде (твердой, жидкой или газообразной).
Основным признаком механических колебаний является повторяемость процесса движения через определенный промежуток времени. Минимальный интервал времени повторяемости движения тела называют периодом колебаний), а обратную ему величину – частотой колебаний.
Таким образом, частота колебаний определяет число колебаний, произошедших за 1 с. Для характеристики колебаний используют также циклическую частоту, которая определяется как число колебаний.
Наиболее простым видом колебаний, существующих в природе, являются гармонические колебания.
Величина, стоящая под знаком косинуса, – фаза гаромонического колебания, при этом фаза колебаний в начальный момент времени, называется начальной фазой.
Процесс распространения колебаний в упругой среде называется волной. Каждая из частиц среды колеблется около положения устойчивого равновесия. Поверхность, которая отделяет колеблющиеся частицы от частиц, пока еще не пришедших в колебательное движение, называют фронтом волны. Совокупность точек, колеблющихся в одинаковых фазах, образует волновую поверхность. Расстояние между двумя соседними частицами, находящимися в одинаковой фазе, называется длиной волны.
Скорость распространения колебаний в пространстве называется скоростью волны. Связь между длиной волны, ее скоростью и периодом колебания.
Так как частота колебания связана с периодом соотношением, то скорость распространения волны можно выразить.
По современным измерениям скорость звука в воздухе при нормальных условиях равна 331 м/с. Скорость распространения звуковых волн в различных веществах при комнатной температуре.
Звуковые волны переносят энергию. Для характеристики среднего потока энергии в какой-либо точке среды вводят понятие «интенсивность звука». Это количество энергии, переносимое звуковой волной за единицу времени через единицу площади поверхности, нормальной (т.е. расположенной под углом 90°) к направлению распространения волны.
4. Воздействие негативных факторов на человека и среду обитания
Ионизирующие излучения
Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.
Радиация – это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).
Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.
Радиоактивное загрязнение – это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.
Вещества состоят из мельчайших частиц химических элементов – атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т.е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.
Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.
Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 – 1017Гц.
Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (альфа-излучение) и бета-частицы (альфа-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение – это потоки электронов или позитронов.
Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 • 1017…5 • 1019 Гц) и гамма-излучением (более 5 • 1019 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.
Радионуклиды, испуская
частицы, превращаются в другие радионуклиды
и химические элементы. Радионуклиды
распадаются с различной
Информация о работе Роль и содержание дисциплины «Безопасность жизнедеятельности»