Автор работы: Пользователь скрыл имя, 04 Апреля 2013 в 22:00, курсовая работа
Цель работы: выявить и проанализировать основные способы получения лазерного излучения, его применение и перспективы.
Для достижения поставленной цели предполагается решение следующих задач:
- рассмотреть принцип действия лазера и его устройство;
- раскрыть основные свойства лазерного излучения;
- охарактеризовать различные типы лазеров;
- проанализировать структуру их построения и действия;
- выявить основные направления применения оптических квантовых генераторов;
Свет от обычной лампы рассеивается в большой области пространства, и его интенсивность убывает, по мере удаления от источника излучения. Лазерный же луч так сильно сфокусирован, что значительное количество фотонов одновременно попадает в незначительную по размерам точку. И поскольку сечение лазерного луча очень мало, в этой области концентрируется огромная энергия. Таким образом, даже незначительный по мощности источник света создает высочайшую плотность энергии в малом объеме пространства, а, значит, луч лазера обладает высокой интенсивностью.
Газовый лазер - лазер с активной средой в виде газов, паров или их смесей. Как и всякий лазер, газовый лазер содержит активную среду, обладающую усилением на одной или нескольких линиях в оптическом диапазоне спектра, и оптический резонатор (в простейшем случае состоящий из двух зеркал, между которыми помещена активная среда) [12, c.31].
Особенности газового лазера определяются свойствами активной среды, плотность которой меняется в широких пределах, однако она значительно меньше, чем в конденсированных средах. По этой причине газовая активная среда в большинстве случаев прозрачна в широкой области спектра и обладает узкими линиями поглощения и излучения. Газовые лазеры могут генерировать узкие линии излучения, лежащие в широкой области спектра, в том числе и в далекой коротковолновой (где нет прозрачных конденсированных сред). Газовые лазеры позволяют получать предельно узкие и стабильные линии генерации. Малая плотность активной среды определяет малость температурных изменений показателя преломления. Это позволяет сравнительно легко получать с газовым лазером предельно малую (дифракционную) расходимость излучения. Многообразие физических процессов, приводящих к образованию инверсии населенностей, создает большое разнообразие типов, характеристик и режимов работы газового лазера. Возможность быстрой прокачки газовой активной среды через оптический резонатор позволила в газовом лазере достичь рекордно больших средних мощностей излучения.
Газовые лазеры, работающие в непрерывном и импульсном режимах, существенно различаются как конструктивно, так и по характеристикам. Для непрерывной генерации требуется, чтобы механизм накачки обеспечивал стационарную во времени инверсию населенностей уровней рабочего перехода. Для этого необходимо эффективное возбуждение верхнего и возможно быстрый распад (опустошение) нижнего уровней. В импульсном режиме можно обеспечить высокую скорость накачки и легче избежать перегрева активной среды [5, c.343-344].
По характеру возбуждения активной среды газовые лазеры принято подразделять на следующие классы: газоразрядные лазеры, газовые лазеры с оптическим возбуждением, газовые лазеры с возбуждением заряженными частицами, газодинамические лазеры, химические лазеры. По типу переходов, на которых возбуждается генерация газового лазера, различают газовые лазеры на атомных переходах, ионные лазеры, молекулярные лазеры на электронных, колебательных и вращательных переходах молекул и эксимерные лазеры. По механизмам образования инверсии населенностей выделяют газовые лазеры с возбуждением электронным ударом, с передачей возбуждения от частиц вспомогательных газов, рекомбинационные газовые лазеры, газовые лазеры с прямым оптическим возбуждением, фотодиссоциационные газовые лазеры и др.
Газодинамические лазеры. Нагретая до высокой температуры (1000—2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме [4, c.375].
Первым квантовым генератором света был рубиновый лазер, созданный в 1960 году. Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Аl2O3 (корунд), в который при выращивании введен в виде примеси оксид хрома Сr2Оз. Красный цвет рубина обусловлен положительным ионом Сr+3. В решетке кристалла А2О3 ион Сг+3 замещает ион Аl+3. Вследствие этого в кристалле возникают две полосы поглощения: одна—в зеленой, другая—в голубой части спектра. Густота красного цвета рубина зависит от концентрации ионов Сг+3: чем больше концентрация, тем гуще красный цвет. В темно-красном рубине концентрация ионов Сг+3 достигает 1%.Обычно используется бледно-розовый рубин, содержащий около 0,05% хрома. Рубиновый кристалл выращивают в специальных печах, затем полученную заготовку отжигают и обрабатывают, придавая ей форму стержня. Длина стержня колеблется от 2 до 30 см, диаметр от 0,5 до 2 см. Плоские торцовые концы делают строго параллельными, шлифуют и полируют с высокой точностью. Иногда отражающие поверхности наносят не на отдельные отражающие пластины, а непосредственно на торцы рубинового стержня. Поверхности торцов серебрят, причем поверхность одного торца делают полностью отражающей, другого — отражающей частично. Обычно коэффициент пропускания света второго торца составляет около 10—25%, но может быть и другим.
Рубиновый стержень помещают в спиральную импульсную ксеноновую лампу, витки которой охватывают его со всех сторон. Вспышка лампы длится миллисекунды. За это время лампа потребляет энергию в несколько тысяч джоулей, большая часть которой уходит на нагревание прибора. Другая, меньшая часть, в виде голубого и зеленого излучения поглощается рубином. Эта энергия и обеспечивает возбуждение ионов хрома [6, c.70-71].
В Приложении Б представлена энергетическая диаграмма, поясняющая принцип работы рубинового лазера. Линии I, II, III соответствуют энергетическим уровням ионов хрома. В нормальном, невозбужденном состоянии ионы хрома находятся на нижнем уровне I. При облучении рубина светом ксеноновой лампы, содержащим зеленую часть спектра, атомы хрома возбуждаются и переходят на верхний уровень III. С уровня III часть возбужденных атомов хрома снова возвращается на основной уровень I, а часть переходит на уровень II. Это так называемый безызлучательный переход, при котором ионы хрома отдают часть своей энергии кристаллической решетке в виде тепла. Вероятность перехода с уровня III на уровень II в 200 раз больше, а с уровня II на уровень I в 300 раз меньше, чем с уровня III на уровень I. Это приводит к тому, что уровень II оказывается более заселенным, чем уровень I. Иными словами, заселенность получается инверсной, и создаются необходимые условия для интенсивных индуцированных переходов.
Такая система крайне неустойчива. Вероятность спонтанных переходов в любой момент времени очень велика. Первый же фотон, появившийся при спонтанном переходе, по закону индуцированного излучения выбьет из соседнего атома второй фотон, переведя излучивший атом в основное состояние. Далее эти два фотона выбьют еще два, после чего их будет четыре, и т. д. Процесс нарастает практически мгновенно. Первая волна излучения, дойдя до отражающей поверхности, повернет обратно и вызовет дальнейшее увеличение числа индуцированных переходов и интенсивности излучения. Отражение от отражающих поверхностей резонатора повторится многократно, и если потери мощности при отражении, вызываемые несовершенством отражающих покрытий, а также полупрозрачностью одного из торцов стержня, через который уже в начале генерации будет вырываться поток излучения, не будут превосходить той мощности, которую приобретает в результате начавшейся генерации формирующийся в стержне лазера луч, то генерация будет нарастать, а мощность увеличиваться до тех пор, пока большинство возбужденных частиц активного вещества (ионов хрома) не отдадут свою энергию, приобретенную в момент возбуждения. Через частично посеребренный торец стержня вырвется луч очень высокой интенсивности. Направление луча будет строго параллельно оси рубина. Те фотоны, направление распространения которых в начале их возникновения не совпало с осью стержня, уйдут через боковые стенки стержня, не вызвав сколько-нибудь заметной генерации [5, c.16-18].
Именно многократное прохождение образованной световой волны между торцовыми стенками резонатора без какого-либо существенного отклонения от оси стержня обеспечивает лучу строгую направленность и огромную выходную мощность.
1.3.3 Лазеры на красителях
Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро (за времена порядка 10-11—10-12 с) переходит безызлучательно на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы Е1 сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. А это означает, что если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров [5, c.386-387].
Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.
1.3.4 Полупроводниковые лазеры
В создании полупроводникового
лазера приоритет принадлежит
Принцип работы полупроводникового лазера может быть объяснен следующим образом. Согласно квантовой теории электроны в полупроводнике могут занимать две широкие энергетические полосы. Нижняя представляет собой валентную зону, а верхняя – зону проводимости. В нормальном чистом полупроводнике при низкой температуре все электроны связаны и занимают энергетический уровень, расположенный в пределах валентной зоны. Если на полупроводник подействовать электрическим током или световыми импульсами, то часть электронов перейдет в зону проводимости. В результате перехода в валентной зоне окажутся свободные места, которые в физике называют «дырками». Эти дырки играют роль положительного заряда. Произойдёт перераспределение электронов между уровнями валентной зоны и зоны проводимости, и можно говорить, в определенном смысле, о перенаселенности верхней энергетической зоны. Электроны из зоны проводимости сваливаются назад в валентную зону (т.е. они рекомбинируют с дырками), испуская при этом фотон (рекомбинационное излучение). Если между зоной проводимости и валентной зоной существует инверсия населенностей, то процесс вынужденного рекомбинационного излучения приведет к генерации [5, c.401-402].
1.3.5 Химические лазеры
Химический лазер определяют как лазер, в котором инверсия населенности достигается непосредственно за счет химической реакции. В химических лазерах обычно используются реакции между газообразными веществами и, как правило, это экзотермические реакции ассоциативного и диссоциативного типа. Реакция ассоциативного вида описывается уравнением вида:
В экзотермической
реакции часть теплоты реакции
перейдет в энергию колебательно-
Реакции диссоциативного типа в общем виде записываются следующим образом:
Если реакция экзотермическая, то часть теплоты реакции может выделится в виде электронной энергии атомов А или в виде внутренней энергии молекул ВС. Наиболее замечательным примером данного типа лазеров следует считать лазер на атомарном йоде, в котором атомарный йод в возбужденном состоянии образуется в результате диссоциации соединения СН3I под воздействием УФ - излучения мощной импульсной лампы. Этот лазер таким образом принадлежит категории лазеров с фотохимической диссоциацией.
Химические лазеры представляют интерес по двум основным причинам:
- Они являются интересным примером прямого преобразования химической энергии в электромагнитную;
- От этих лазеров можно получить высокую выходную мощность или высокую выходную энергию, что обусловлено весьма большим выделением энергии в экзотермической реакции [5, c.396-397].
1.4 Практическое использование оптических квантовых генераторов
1.4.1 Применение лазерного луча в промышленности и технике
Сразу же после появления лазеров и начала исследования взаимодействия лазерного луча с различными материалами стало ясно, что этот инструмент может найти широкое применение в разнообразных промышленных технологических процессах. Дело в том, что при попадании подобного луча на поверхность материала он вызывает мгновенное разогревание этой поверхности вплоть до испарения даже очень тугоплавкого материала. Это обстоятельство используется при сверлении отверстий в твердых материалах, резке и сварке металлов и пластмасс, заточке режущих инструментов, в том числе изготовленных из сверхтвердых сплавов. Сверление отверстий в алмазных фильерах при помощи традиционных способов занимает около двух часов. Этот же процесс, осуществляемый при помощи лазерной установки, длится не более 0,1 секунд. Для того чтобы прожечь стальную пластинку толщиной 1 мм лучом лазера, достаточно импульса длительностью в одну тысячную секунды с энергией 0,5 Дж. В результате получается отверстие порядка 0,1-0,2 мм. Лучом такой же мощности можно сварить два куска фольги толщиной 0,05 мм или две тонкие проволочки.