Автор работы: Пользователь скрыл имя, 07 Декабря 2013 в 15:56, реферат
Микроэлементы являются экзогенными химическими факторами, играющими значительную роль в таких жизненно важных процессах, как рост, размножение, кроветворение, клеточное дыхание, обмен веществ и др. Микроэлементы образуют с белками организма специфические металлоорганические комплексные соединения, являющиеся регуляторами биохимических реакций. В случае аномального содержания или нарушенного содержания или нарушенного соотношения микроэлементов в окружающей среде в организме человека могут развиться нарушения с характерными клиническими симптомами, главным образом в связи с нарушением функций ферментов, в состав которых они входят или их активируют.
Медь. Недостаточность меди, полная или частичная, у взрослых людей никогда не была описана, даже в районах, где наблюдается острая недостаточность меди у пастбищного рогатого скота. Тем не менее такая недостаточность лежит в основе этиологии трех различных синдромов у грудных детей. Во-первых, совместное лечение железом и медью оказалось необходимым для полного выздоровления от умеренной или острой анемии у грудных детей бедных слоев населения, основным продуктом питания которых было свежее или сухое коровье молоко. Симптомы включали бледность, преорбитальный или претибиальный отек, замедление роста, анорексию по отношению к твердой пище, низкое содержание меди и железа в сыворотке крови. Другая группа случаев иллюстрирует синдром, ранними диагностическими признаками которого являются нейтропения, хроническая диарея, сопровождающаяся резким снижением концентрации меди в сыворотке крови, а также снижением содержания в крови церуллоплазмина. Синдром Менкеса “петлистых волос” у грудных детей, как теперь известно, связан с генетически обусловленным дефектом всасывания меди. Характерными признаками являются прогрессирующая умственная отсталость, нарушенная кератинизация волос, гипотермия, снижение концентрации меди в сывортке крови, разрушение концов длинных трубчатых костей, дегенеративные изменения эластина аорты. Метаболическая роль меди: медь была обнаружена в составе некоторых аминооксидаз. Возможно, что дефекты эластина и соединительной ткани сосудов и синтеза скелетного коллагена, наблюдаемые у лишенных меди особей различных видов, являются следствием сопутствующего снижения аминооксидазной активности в тканях. Считают, что на поздней стадии истощения меди заметное уменьшение цитохромоксидазной активности в печени, мышцах и нервной ткани играет значительную роль в нарушении образования миелина и процесса синтеза ряда других веществ, зависящих от производства нуклеозидтрифосфатов при окислительном фосфорилировании. Медь входит также в состав ферментов допамингидроксилазы, уратоксидазы и перекисной дисмутазы (гепатокупреина). Суточная потребность в меди 40 мкг/кг в сутки. Правда, эта доза сильно варьирует в зависимости от возраста, веса и пола. Причем последние исследования показали, что она колеблется от 30 мкг/кг до 80 мкг/кг. Анализ продуктов питания показал, что следующие продукты являются источниками меди: баранья печень, телячья печень, устрицы, многие виды рыбы, зеленые овощи( данные продукты имеют в своем составе не менее 100мкг на 100ккал). В отличие от них следующие продукты содержат менее 50 мкг на 100 ккал и являются относительно бедными источниками этого элемента: сыр, свежее и сухое молоко, говядина и баранина, белый и черный хлеб, многие крупы. Дальнейшие исследования обмена меди показывают, что в некоторые периоды жизни человека уровень меди в организме либо резко повышается как, например, при беременности, или же резко снижается - притяжелых инфекциях, при онкологических заболеваниях. Также показано, что очень низкая концентрация меди в сыворотке крови может быть одной из причин развития атеросклероза.
Хром. До открытия важной биологической роли трехвалентного хрома все исследования касались токсических свойств соединений шестивалентного хрома. Только трехвалентный хром проявляет биологическую активность и присутствует в продуктах питания: окисления трехвалентного хрома в шестивалентный в тканях не происходит. Теперь несколько слов о недостаточности хрома. Первое наблюдаемое последствие небольшой недостаточности хрома у экспериментальных животных - снижение скорости, с которой инъецированная глюкоза удаляется из межклеточного пространства. Механизм этого явления – понижение чувствительности перефирических тканей к инсулину.Недостаточность хрома может быть обусловлена его низким содержанием в рационе. Было обнаружено, что белково-каллорийная недостаточность может быть связана с истощением запасов хрома в организме, другой причиной может быть предпочтение, отдаваемое продуктам с низким содержанием хрома. Также значительные количества сахара, потребляемые человеком, увеличивают расход хрома в организме.Хром присутствует в продуктах растительного происхождения в концентрациях 20-50 мкг на 1 кг сырой массы, что в несколько сотен раз ниже концентраций, обнаруживаемых в организме человека. Хром присутствует в высокой концентрации в организме новорожденных, но количество его с возрастом резко уменьшается.Потребность в хроме составляет от 20 до 500 мкг в зависимости от характера питания (как упоминалось выше, расход хрома резко возрастает в связи с избытком сахара в рационе), а также учитывая суточное выведение хрома с мочой - 5-10 мкг.
Концентрация хрома в продуктах питания колеблется от величин, недоступных определению до нескольких сот миллиграммов на 1 кг веса. Недавние исследования позволяют предположить, что значительная часть хрома пищи может улетучиться в процессе сушки и озоления. Большие количества хрома обнаружены пока что только в дрожжах.Насколько известно, токсичность почти полностью ограничивается соединениями шестивалентного хрома. Чтобы вызвать токсический эффект с помощью трехвалентного хрома требуются очень высокие дозы.
Ртуть. Кроме свинца наиболее полно по сравнению с другими микроэлементами изучена ртуть. Отравление ртутью, основные его проявления в качестве профессиональной болезни, описанные Льюисом Кэроллом как “безумие шляпника” и до настоящего времени остаются классическими. Раньше этот металл иногда применялся для серебрения зеркал и производства фетровых шляп. У рабочих часто наблюдались психические нарушения токсического характера, называвшиеся “безумием”.Хлористая ртуть когда-то “популярная” среди самоубийц до сих пор используется в фотогравюрах. Она также применяется в некоторых инсектицидах и фугицидах, что представляет опасность для жилых помещений. В наши дни отравления ртутью редки, но, тем не менее, эта проблема заслуживает внимания.Несколько лет тому назад в г. Минимата (Японии) была зарегистрирована эпидемия отравления ртутью. Ртуть была обнаружена в консервированном тунце, который в качестве пищи употребляли жертвы этого отравления. Выяснилось, что один из заводов сбрасывал в Японское море отходы ртути как раз в том районе, откуда появились отравленные люди. Поскольку ртуть использовалась в краске для судов, ее и раннее постоянно обнаруживали в мировом Океане в небольших количествах. Однако японская трагедия позволила привлечь внимание общественности к этой проблеме. Маленькие дозы, которые и сейчас обнаруживаются в рыбе, в расчет не принимались, так как в маленьких концентрациях ртуть не аккумулируется. Она выделяется через почки, толстую кишку, желчь, пот и слюну. Между тем ежедневное поступление этих доз может иметь токсические последствия.Производные ртути способны инактивировать энзимы, в частности цитохромоксидазу, принимающую участие в клеточном дыхании. Кроме того, ртуть может соединяться с сульфгидрильными и фосфатными группами и, таким образом, повреждать клеточные мембраны. Соединения ртути более токсичны, чем сама ртуть. Морфологические изменения при отравлении ртутью наблюдаются там, где наиболее высокая концентрация металла, то есть в полости рта, в желудке, почках и толстой кишке. Кроме того, может страдать и нервная система.Острая интоксикация ртутью. Она возникает при массивном поступлении ртути или ее соединений в организм. Пути поступления: желудочно-кишечный тракт, дыхательные пути, кожа. Морфологически она может виде массивных некрозов в желудке, толстой кишке, а также острого тубулярного некроза почек. В головном мозге никаких характерных повреждений не отмечается. Резко выражен отек.Хроническая интоксикация ртутью. Хроническая интоксикация ртутью сопровождается более характерными изменениями. В ротовой полости из-за выделения ртути усиленно функционирующими слюнными железами возникает обильное слюноотделение. Ртуть скапливается по краям десен и вызывает гингивит и окраску десен, похожую на “свинцовую каемку”. Могут расшатываться зубы. Часто возникает хронический гастрит, который сопровождается изъязвлениями слизистой. Поражение почек характеризуется диффузным утолщением базальной мембраны клубочкового аппарата, протеинурией, а иногда развитием нефротического синдрома. В эпителии извитых канальцев развивается гиалиново-капельная дистрофия. В коре головного мозга, преимущественно затылочных долей и в области задних рогов боковых желудочков, выявляются диссеминированные очаги атрофии.Ртуть крайне слабо распространена в земной коре (-0,1 Х 10-4 %), однако удобна для добычи, так как концентрируется в сульфидных остатках, например, в виде киновари (НgS). В этом виде ртуть относительно безвредна, но атмосферные процессы, вулканическая и человеческая деятельность привели к тому, что в мировом океане накопилось около 50 млн. т этого металла. Естественный вынос ртути в океан в результате эрозии 5000 т/год, еще 5000 т/год ртути выносится в результате человеческой деятельности.Первоначально ртуть попадает в океан в виде Нg2+, затем она взаимодействует с органическими веществами и с помощью анаэробных организмов переходит в токсичные вещества метилртуть (СН3Нg)+ и диметилртуть (СН3-Нg-СН3),Ртуть присутствует не только в гидросфере, но и в атмосфере, так как имеет относительно высокое давление паров. Природное содержание ртути составляет ~0,003-0,009 мкг/м3.Ртуть характеризуется малым временем пребывания в воде и быстро переходит в отложения в виде соединений с органическими веществами, находящимися в них. Поскольку ртуть адсорбируется отложениями, она может медленно освобождаться и растворяться в воде, что приводит к образованию источника хронического загрязнения, действующего длительное время после того, как исчезнет первоначальный источник загрязнения.Мировое производство ртути в настоящее время составляет более 10000 т в год, большая часть этого количества используется в производстве хлора. Ртуть проникает в воздух в результате сжигания ископаемого топлива. Анализ льда Гренландского ледяного купола показал, что, начиная с 800 г. н.э. до 1950-х гг., содержание ртути оставалось постоянным, но уже с 50-х гг. нашего столетия количество ртути удвоилось. На рис.23 представлены пути цикловой миграции ртути.Металлическая ртуть опасна, если ее проглотить и вдыхать ее пары. Металлическая ртуть, находящаяся, например, в термометрах, сама по себе редко бывает опасной. Лишь ее испарение и вдыхание паров ртути могут привести к развитию фиброза легких. При этом у человека появляется металлический вкус во рту, тошнота, рвота, колики в животе, зубы чернеют и начинают крошиться. Пролитая ртуть разлетается на капельки и, если это произошло, ртуть должна быть тщательно собрана. Жидкий металл раньше использовался для лечения упорных запоров, так как его плотность и законы тяжести способствовали мощному терапевтическому эффекту. При этом признаков ртутной интоксикации не наблюдалось.Неорганические соединения ртути практически нелетучи, поэтому опасность представляет попадание ртути внутрь организма через рот и кожу. Соли ртути разъедают кожу и слизистые оболочки тела. Попадание солей ртути внутрь организма вызывает воспаление зева, затрудненное глотание, оцепенение, рвоту, боли в животе.У взрослого человека при попадании внутрь около 350 мг ртути может наступить смерть.Загрязнение ртутью может быть уменьшено в результате запрещения производства и применения ряда продуктов. Нет сомнения, что загрязнение ртутью всегда будет острой проблемой. Но с введением строгого контроля за отходами производства, содержащими ртуть, а также за пищевыми продуктами можно уменьшить опасность отравления ртутью.
Метилртуть. Ртуть в составе выбросов из антропогенных и природных источников поступает в атмосферу в неорганической форме и затем в результате протекания биологических процессов может преобразовываться в метилртуть в почве и водной среде.В окружающей среде происходит биологическая аккумуляция метилртути, которая беспрепятственно поступает в человеческий организм через пищевые продукты. Атмосферные концентрации ртути в Европе, а также во всем мире обычно находятся на уровне, существенно ниже того, при котором, как известно, оказывается негативное воздействие на здоровье человека в результате вдыхания ртути. Концентрации неорганических соединений ртути в почве и подземных водах обычно находятся на уровне существенно ниже того, при котором, как известно, возникают негативные последствия для здоровья человека в результате потребления питьевой воды.Метилртуть является сильнодействующим нейротоксичным химическим веществом. Нерожденные дети (т.е. зародыши) являются наиболее уязвимой группой и подвергаются воздействию этого химического вещества главным образом в результате потребления рыбы в рационе матери. Метилртуть также выделяется вместе с молоком матери. Данные человеческого биомониторинга и биомоделирования режима питания свидетельствуют о том, что допустимые объемы поступления метилртути в составе пищевых продуктов превышаются в подгруппах населения, которые потребляют значительное количество рыбы, например в Скандинавии, Северной Америке и Франции. Концентрации ртути в размере 0,5 мг/кг, т.е. показателя, использующегося во многих странах в качестве опорного, нередко превышаются для некоторых видов (главным образом крупных хищных) пресноводных и морских рыб и млекопитающих.Ретроспективные данные (например, данные об озерных отложениях в Скандинавии) свидетельствуют о том, что в сравнении с доиндустриальной эрой концентрации ртути возросли в 2-5 раз в результате антропогенных выбросов ртути и ее переноса на большие расстояния. Метилртуть, присутствующая в организмах пресноводных рыб, трансформировалась из неорганической ртути, содержащейся в почве и непосредственных атмосферных осаждениях. С 1990-х годов антропогенные выбросы ртути в Европе сократились приблизительно на 50%. Данные моделирования и ограниченного мониторинга свидетельствуют о том, что уровень осаждения ртути в Европе сократится в аналогичном размере. Однако не было отмечено сопутствующего уменьшения концентрации метилртути в организмах пресноводных рыб.Существует лишь ограниченный объем информации об источниках метилртути, присутствующей в организме морских рыб, и о роли, которую в этом процессе играет перенос загрязнения на большие расстояния. Ряд данных свидетельствует о росте концентрации ртути в организмах морских рыб и млекопитающих в Арктике - этот факт подтверждает воздействие переноса ртути на большие расстояния. В целом потребление рыбы весьма благоприятно сказывается на здоровье человека, однако в организмах представителей некоторых групп населения, потребляющих значительное количество рыбы или рыбы, содержащей загрязняющие вещества, объем поступления метилртути может достигать опасных уровней. В этой связи сокращение концентраций метилртути в рыбе следует рассматривать в качестве высокоприоритетной задачи.Одним из средств для достижения этой цели является сокращение атмосферных выбросов и переноса загрязнения на большие расстояния.Ртуть и ее соединения опасны для жизни. Метилртуть особенно опасна для животных и человека, так как она быстро переходит из крови в мозговую ткань, разрушая мозжечок и кору головного мозга. Клинические симптомы такого поражения - оцепенение, потеря ориентации в пространстве, потеря зрения. Симптомы ртутного отравления проявляются не сразу. Другим неприятным последствием отравления метилртутью является проникновение ртути в плаценту и накапливание ее в плоде, причем мать не испытывает при этом болезненных ощущений. Метилртуть оказывает тератогенное воздействие на человека. Ртуть относится к I классу опасности.
Мышьяк. Мышьяк в природе присутствует в виде сульфатов. Его содержание в свинцово-цинковых концентратах около 1 %. Вследствие летучести он легко попадает в атмосферу.Самыми сильными источниками загрязнения этим металлом являются гербициды (химические вещества для борьбы с сорными растениями), фунгициды (вещества для борьбы с грибными болезнями растений) и инсектициды (вещества для борьбы с вредными насекомыми).По токсическим свойствам мышьяк относится к накапливающимся ядам. По степени токсичности следует различать элементарный мышьяк и его соединения. Элементарный мышьяк сравнительно мало ядовит, но обладает тератогенными свойствами. Вредное воздействие на наследственный материал (мутагенность) оспаривается.Соединения мышьяка медленно поглощаются через кожу, быстро всасываются через лёгкие и желудочно-кишечный тракт. Смертельная доза для человека - 0,15-0,3 г.Хроническое отравление вызывает нервные заболевания, слабость, онемение конечностей, зуд, потемнение кожи, атрофию костного мозга, изменения печени. Соединения мышьяка являются канцерогенными для человека. Мышьяк и его соединения относятся ко II классу опасности.Арсенизм, или отравление мышьяком, столь распространенное и любимое в эпоху средневековья, к счастью в наше время - очень редкая болезнь.Соли, оксиды и пары мышьяка чрезвычайно опасны. Препараты на основе мышьяка используются в качестве гербицидов для опрыскивания фруктов, в качестве инсектицидов, яда для крыс и во многих промышленных процессах. Различают острый и хронический арсенизм.Острое отравление, обычно, наблюдаемое при суициде или гомициде, редко, но хроническое отравление из-за продолжительного контакта с мышьяковой пылью, парами, как в промышленности, так и в сельском хозяйстве является нередко причиной смерти и в наши дни.Механизм воздействия на клетку еще полностью неясен. Однако известно, что мышьяк соединяется с сульфгидрильными группами (SH - группами). Вот почему при хронической интоксикации мышьяк скапливается в волосах, ногтях, эпидермисе и может там обнаруживаться. Возможно, что мышьяк может инактивировать энзимы, содержащие SH - группы и, таким образом, являться ингибитором дыхательных ферментов.Проявления арсенизма зависят от дозы. Довольно маленькая доза в 30 мг триоксида мышьяка может быть смертельной. Значительные дозы этого сильнейшего яда могут убить в течение 1-2 часов, вызывая обычно выраженную периферическую вазодиллятацию, резкое уменьшение объема циркулирующей крови и шок. Предполагают, что мышьяк действует как депрессор центральной нервной системы и ведет к параличу вазомоторных центров. Если отравление менее значительно, то после первых суток основные морфологические изменения обнаруживаются в сосудах, в головном мозге, пищеварительном тракте и коже.Множественные петехии выявляются на коже и в серозной оболочках внутренних органов, что связано с деструкцией базальной мембраны капилляров. Если больной пережил два или три дня, в желудке и в кишечнике можно наблюдать выраженное полнокровие, отек, участки геморрагии и очаги коагуляционного некроза. В головном мозге выявляется диффузная геморрагическая инфильтрация, обусловленная фибриноидным некрозом стенок капилляров, отек. В сосудах микроциркуляторного русла формируются тромбы, которые могут быть причиной инфарктов мозга.Если больной пережил 4-5 дней, в паренхиматозных органах, таких как почки, печень и сердце выявляется жировая дистрофия. У этих больных быстро развивается кардиоваскулярный коллапс, депрессия ЦНС, приводящие к коме и смерти через несколько часов. При подостром течении болезни наблюдается рвота, бесконечный профузный понос.Клинически для хронического отравления мышьяком характерно быстро развивающиеся недоиагание и мышечная слабость. Затем появляются онемение и периферические параличи. Нередко первичный диагноз связан с появлением кожных пигментных пятен, характерных для хронической интоксикации. Если установлен источник отравления, и он вовремя обезврежен, то прогноз благоприятен при условии адекватно проведенного лечения. При хроническом течении заболевания основные повреждения локализуются в пищеварительном тракте, нервной системе и коже. Они немного напоминают таковые при острой форме отравления, но менее тяжелые. Петехии на коже не столь многочисленны и менее выражены. В желудке и тонкой кишке имеют место полнокровие, отек и мелкие эрозии. Повреждения головного мозга редки. Больше страдают периферические нервы, в которых резко выражены явления демиэлинизации вплоть до деструкции осевых цилиндров. Характерны темно-коричневые пигментации в виде изолированных или сливающихся пятен на коже. На ладонях и стопах развивается гиперкератоз. В этих участках часто возникают эпидермоидные карциномы. В почках и в печени морфологические изменения сходные с теми, что наблюдаются при остром отравлении. В настоящее время внимание ученых привлекли случаи развития рака легких и ангиосарком печени, которые развиваются у виноградарей, имеющих контакт с пестицидами, содержащими мышьяк.
Свинец. В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.Отравление свинцом (сатурнизм) - представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для токсического проявления. Острые свинцовые отравления встречаются редко. Их симптомы - слюнотечение, рвота, кишечные колики, острая форма отказа почек, поражение мозга. В тяжёлых случаях - смерть через несколько дней.Ранние симптомы отравления свинцом проявляются в виде повышенной возбудимости, депрессии и раздражительности. При отравлении органическими соединениями свинца его повышенное содержание обнаруживают в крови.Существует острая и хроническая форма болезни. Острая форма возникает при попадании значительных его доз через желудочно-кишечный тракт или при вдыхании паров свинца, или при распылении свинцовых красок. Хроническое отравление наиболее часто возникает у детей, лижущих поверхность предметов, окрашенных свинцовой краской. Дети в отличие от взрослых гораздо легче абсорбируют свинец. Хроническое отравление может развиваться при использовании плохо обожженной керамической посуды, покрытой эмалью, содержащей свинец, при употреблении зараженной воды, особенно в старых домах, где канализационные трубы содержат свинец, при злоупотреблении алкоголем, изготовленным в перегонном аппарате, содержащим свинец. Проблема хронической интоксикации связана также с наличием паров свинца при применении тетраэтилсвинца при ожогах в качестве антишокового препарата.Выбросы газа отравляют не только атмосферу, но почву, и воду, и продукты питания. Только в Северной Америке такие выбросы в атмосферу составляют 200 тыс. тон свинца ежегодно. Отравление атмосферы повсеместно и в среднем взрослый человек получает примерно от 150 до 400 мг свинца и его концентрация в крови и в тканях составляет до 25 мг/100 мл. Для возникновения клинических признаков болезни необходимо около 80 мгр/100 мл.Попадая оральным путем, свинец абсорбируется в кишечнике и достигает печени, откуда с желчью вновь попадает в 12-ти перстную кишку. Одна часть свинца реабсорбируется, другая удаляется с испражнениями. Если свинец попадает через дыхательные пути, он быстро достигает кровотока и тогда его действие максимально. Из крови свинец экскретируется почками, часть его депонируется в костях. Свинец ингибирует действие многих энзимов, а также инкорпорацию железа в организме, в результате чего в моче резко увеличивается количество свободного протопорфирина. Его увеличение в моче является четким клиническим признаком сатурнизм.Органами -- мишенями при отравлении свинцом являются кроветворная и нервная системы, почки. Менее значительный ущерб сатурнизм наносит желудочно-кишечному тракту. Один из основных признаков болезни -- анемия, возникающая в результате усиленного гемолиза. Эта анемия характеризуется “точечным крапом” эритроцитов в виде базофильных гранул, хорошо выявляемых при окраске метиленовым синим. На уровне нервной системы отмечается поражение головного мозга и периферических нервов. Сатурнизм-обусловленная энцефалопатия чаще наблюдается у детей, реже - у взрослых. В головном мозге выражен диффузный отек серого и белого вещества в сочетании с дистрофическими изменениями кортикальных и ганглионарных нейронов, демиэлинизация белого вещества. В капиллярах и артериолах отмечается пролиферация эндотелиоцитов. Мозговые поражения клинически сопровождаются конвульсиями и бредом, иногда приводят к сонливости и коме. Из периферических нервов чаще всего поражаются наиболее “активные” двигательные нервы мышц. Морфологически наблюдается их демиэлинизация с последующим повреждением осевых цилиндров. Тяжелее всего страдают мышцы - разгибатели кисти, которая приобретает вид “рогов оленя”. Паралич m. peroneus приводит к положению “согнутой ноги”.При хроническом сатурнизме характерно появление кислотоустойчивых внутриядерных включений в эпителиальных клетках проксимальных канальцах нефрона. Эти включения содержат магний, кальций, свинец и протеины. Каково бы ни было их происхождение, выявление этих включений является важным морфологическим признаком сатурнизма. У некоторых больных может наблюдаться развитие хронического тубуло-интерстициального нефрита и хронической почечной недостаточности.Интоксикация свинцом может быть, по большей части предупреждена, особенно у детей. Законы запрещают использовать краски на основе свинца, равно как и его присутствие в них. Соблюдение этих законов может хоть частично решить проблему этих “тихих эпидемий”.Свинец является металлом, оказывающим хорошо известное нейротоксическое воздействие. Нарушение процесса развития нервной системы детей является наиболее важным воздействием свинца. Эти нарушения могут объясняться его воздействием на эмбрионы, а также в период грудного вскармливания и в раннем детском возрасте.Свинец накапливается в скелете, и его поступление из костей в период беременности и грудного кормления вызывает воздействие на эмбрионы и детей, вскармливаемых грудью. В этой связи важное значение имеет воздействие свинца на организм женщин до беременности.В последние десятилетия во многих районах отмечено значительное сокращение уровней Pb-B, главным образом, в результате постепенного прекращения использования этилированного бензина, а также в связи с уменьшением воздействия других источников. Существующий в настоящее время самый низкий средний уровень Pb-B в ряде европейских стран составляет около 20 мкг/л; однако в отношении многих районов Европы отсутствует надежная информация об уровнях Pb-B.Относительный вклад источников зависит от местных условий. Пища является доминирующим источником поступления свинца в организм человека во всех группах населения. Важным источником поступления свинца в организм младенцев и детей младшего возраста может быть также попадание в организм через их руки пищи, содержащей частицы загрязненной почвы, пыли и свинцовой (старой) краски. При использовании водопроводных систем со свинцовыми трубами поступление свинца в организм через питьевую воду может быть также важным источником, в особенности для детей. Воздействие свинца в результате вдыхания может быть также значительным в тех случаях, когда концентрации свинца в окружающем воздухе являются высокими.В последние десятилетия концентрации свинца в окружающем воздухе сократились: в период 1990-2003 годов уровни содержания свинца в воздухе сократились на 50-70% в Европе. Аналогичным образом сократились уровни атмосферного осаждения.Ежегодные объемы поступления свинца в верхние слои почвы в результате ТЗВБР и в связи с использованием минеральных и органических удобрений имеют практически одинаковый порядок величины и изменяются между странами, а также в зависимости от объема сельскохозяйственной деятельности. Это поступление является относительно небольшим в сравнении с уже накопленными запасами свинца, поступающими из природных источников и в результате ресуспендирования. Однако ТЗВБР может в значительной степени повышать содержание свинца в сельскохозяйственных культурах в результате непосредственного осаждения. Хотя объемы его поглощения через корни растений являются относительно небольшими, в долгосрочной перспективе особую озабоченность вызывает рост концентраций свинца в почве, которому следует препятствовать ввиду возможной опасности воздействия низких концентраций свинца на здоровье человека. Поэтому объемы атмосферных выбросов свинца следует поддерживать на максимально возможном низком уровне.Содержание свинца в магматических породах позволяет отнести его к категории редких металлов. Он концентрируется в сульфидных породах, которые встречаются во многих местах в мире. Свинец легко выделить путем выплавки из руды. В природном состоянии он обнаруживается в основном в виде галенита (РbS).Свинец, содержащийся в земной коре, может вымываться под воздействием атмосферных процессов, переходя постепенно в океаны. Ионы Рb 2+ довольно нестабильны, и содержание свинца в ионной форме составляет всего 10 -8 %. Однако он накапливается в океанских осадках в виде сульфитов или сульфатов. В пресной воде содержание свинца гораздо выше и может достигать 2 х 10 -6 %, а в почве примерно такое же количество, что и в земной коре (1,5 х 10 -3 %) из-за нестабильности этого элемента в геохимическом цикле.Свинцовые руды содержат 2-20 % свинца. Концентрат, получаемый флотационным способом, содержит 60-80 % Рb. Его нагревают для удаления серы и выплавляют свинец. Такие первичные процессы крупномасштабны. Если же для получения свинца используют отходы, процессы выплавки называют вторичными. Ежегодное мировое потребление свинца составляет более 3 млн. т, из них 40 % используют для производства аккумуляторных батарей, 20% -для производства алкила свинца - присадки к бензину, 12% применяют в строительстве, 28 % для других целей.Ежегодно в мире в результате воздействия атмосферных процессов мигрирует около 180 тыс. т свинца. При добыче и переработке свинцовых руд теряется более 20 % свинца. Даже на этих стадиях выделение свинца в среду обитания равно его количеству, попадающему в окружающую среду в результате воздействия на магматические породы атмосферных процессов.Наиболее серьезным источником загрязнения среды обитания организмов свинцом являются выхлопы автомобильных двигателей.Антидетонатор тетраметил - или тетраэтилсвинеп - прибавляют к большинству бензинов, начиная с 1923 г., в количестве около 80 мг/л. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Основная его масса осаждается на землю, но и в воздухе остается заметная ее часть.Свинцовая пыль не только покрывает обочины шоссейных дорог и почву внутри и вокруг промышленных городов, она найдена и во льду Северной Гренландии, причем в 1756 г. содержание свинца во льду составляло 20 мкг/т, в 1860 г. уже 50 мкг/т, а в 1965 г. - 210 мкг/т.Активными источниками загрязнения свинцом являются электростанции и бытовые печи, работающие на угле.Источниками загрязнения свинцом в быту могут быть глиняная посуда, покрытая глазурью; свинец, содержащийся в красящих пигментах.Свинец не является жизненно необходимым элементом. Он токсичен и относится к I классу опасности. Неорганические его соединения нарушают обмен веществ и являются ингибиторами ферментов (подобно большинству тяжелых металлов). Одним из наиболее коварных последствий действия неорганических соединений свинца считается его способность заменять кальций в костях и быть постоянным источником отравления в течение длительного времени. Биологический период полураспада свинца в костях - около 10 лет. Количество свинца, накопленного в костях, с возрастом увеличивается, и в 30-40 лет у лиц, по роду занятий не связанных с загрязнением свинца, составляет 80-200 мг.Органические соединение свинца считаются ещё более токсичными, чем неорганические.Вдыхаемая пыль примерно на 30-35 % задерживается в легких, значительная доля её всасывается потоком крови. Всасывания в желудочно-кишечном тракте составляют в целом 5-10 %, у детей - 50 %. Дефицит кальция и витамина Д усиливает всасывание свинца. Вследствие глобального загрязнения окружающей среды свинцом он стал вездесущим компонентом любой пищи и кормов. Растительные продукты в целом содержат больше свинца, чем животные.