Ядерные реакторы

Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 07:33, реферат

Описание работы

Ядерный реактор – это установка, в которой осуществляется управляемая самоподдерживающаяся цепная реакция деления ядер. В результате этой реакции высвобождается ядерная энергия, которая преобразуется в тепловую с последующим использованием ее внешним потребителем.
Современные реакторы достаточно разнообразны по назначению, составу и конструкции и их классифицируют по различным признакам, основные из которых следующие:

Содержание работы

Понятие и классификация реакторов……………………………………………3
Отличительные особенности……………………………………………...……..4
Условия работы…………………………………………………………………...5

Файлы: 1 файл

реферат по кириллову.docx

— 20.29 Кб (Скачать файл)

СОДЕРЖАНИЕ

 

 

  1. Понятие и классификация реакторов……………………………………………3
  2. Отличительные особенности……………………………………………...……..4
  3. Условия работы…………………………………………………………………...5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Понятие и классификация реакторов

 

Ядерный реактор – это  установка, в которой осуществляется управляемая самоподдерживающаяся цепная реакция деления ядер. В  результате этой реакции высвобождается ядерная энергия, которая преобразуется  в тепловую с последующим использованием ее внешним потребителем.

Современные реакторы достаточно разнообразны по назначению, составу  и конструкции и их классифицируют по различным признакам, основные из которых следующие:

  1. По назначению реакторы делятся на :

А)  энергетические – для получения теплоты и электроэнергии;

Б) двухцелевые – для получения электроэнергии и нового ядерного горючего;

В) исследовательские –  для изучения поведения материалов под действием облучения и  проведения нейтронно-физических исследований.

  1. По спектру нейтронов различают реакторы:

А) на быстрых нейтронах;

Б) на промежуточных нейтронах;

В) на тепловых нейтронах.

Большинство работающих у  нас в стране и за рубежом –  это реакторы на тепловых нейтронах.

  1. По конструкционным особенностям реакторы подразделяют на корпусные и канальные. В первых теплоноситель движется сплошным потоком и реактор имеет герметичный корпус, рассчитанный на давление теплоносителя. Во вторых теплоноситель движется внутри труб, проходящих через активную зону; давление теплоносителя в таких реакторах несут трубы.

 

 

 

  1. Отличительные особенности

 

В АЭС с некипящими реакторами температура воды в первом контуре  ниже температуры кипения. При необходимых  для получения приемлемого коэффициента полезного действия температурах (больше 300 °C) это возможно только при высоких  давлениях (в реакторах ВВЭР-1000 рабочее  давление в корпусе 160 атм), что требует  создания высокопрочного корпуса. Насыщенный водяной пар под давлением 12—60 атм при температуре до 330 °C вырабатывается во втором контуре. В кипящих реакторах  пароводяную смесь получают в  активной зоне. Давление воды в первом контуре составляет около 70 атм. При  этом давлении вода закипает в объёме активной зоны при температуре 280 °C. Кипящие реакторы обладают рядом  достоинств по сравнению с некипящими. В кипящих реакторах корпус работает при более низком давлении, в схеме  АЭС нет парогенератора.

Особенность кипящих реакторов  заключается в том, что у них  отсутствует борное регулирование, компенсация медленных изменений  реактивности (например, выгорания  топлива) производится только межкассетными  поглотителями, выполненными в виде креста. Борное регулирование неосуществимо  из-за хорошей растворимости бора в паре (большая его часть будет  уноситься в турбину). Бор вводят лишь на время перегрузки топлива  для создания глубокой подкритичности.

В большинстве кипящих  реакторов поглощающие стержни  системы управления и защиты располагаются  снизу. Таким образом значительно  повышается их эффективность, так как  максимум потока тепловых нейтронов  смещён в реакторах этого типа в нижнюю часть активной зоны. Такая схема также более удобна при перегрузках топлива и освобождает верхнюю часть реактора от приводов СУЗ, позволяя таким образом более удобно организовать сепарацию пара.

 

 

  1. Условия работы

 

Схема работы атомной электростанции с кипящим реактором:

1. Корпус реактора;

2. Тепловыделяющие сборки

3. Стержни управления  и защиты

4. Циркуляционные насосы

5. Приводы стержней СУЗ

6. Пар на турбину

7. Подпиточная вода

8. Цилиндр высокого давления  турбины

9. Цилиндр низкого давления  турбины 10. Турбогенератор

11. Возбудитель

12. Конденсатор

13. Охлаждающая вода конденсатора

14. Подогреватель подпиточной  воды

15. Питательный насос

16. Конденсатный насос

17. Железобетонное ограждение

18. Подключение к сети

Для устойчивой работы кипящего корпусного реактора выбирают такой  режим, при котором массовое паросодержание не превышает определённую величину. При больших значениях массового  паросодержания работа реактора может  быть неустойчивой. Такая неустойчивость объясняется тем, что пар вытесняет  воду из активной зоны, а это увеличивает  длину замедления нейтронов LS. При слишком бурном кипении значение LS возрастает настолько, что реактор получает отрицательную реактивность и мощность реактора начинает падать.

 

Снижение мощности уменьшает  интенсивность кипения, массовое паросодержание, а значит, и длину замедления. В результате такого процесса освобождается  реактивность, после чего мощность реактора и интенсивность кипения  начинают возрастать. Происходит опасное  для конструкции реактора и обслуживающего персонала колебание мощности.

При паросодержании ниже допустимого  таких опасных колебаний мощности не происходит, реактор саморегулируется, обеспечивая стационарный режим  работы. Так, снижение уровня мощности и уменьшение интенсивности кипения  освобождает реактивность, обеспечивающую возврат уровня мощности к исходному. Паросодержание воды на выходе из активной зоны зависит от удельной мощности. Поэтому допустимое паросодержание, ниже которого обеспечивается устойчивая работа кипящего реактора, ограничивает мощность реактора с заданными размерами  активной зоны. При таком ограничении  с единицы объёма кипящего реактора снимается меньшая мощность, чем  с единицы объёма некипящего реактора. Это существенный недостаток кипящих  реакторов.

Вышесказанное справедливо  для активной зоны, в которой объем  воды-замедлителя избыточен относительно оптимального её количества, определяемого  из отношения объёма воды к объёму топлива. В этом случае уменьшение количества воды-замедлителя нейтронов в  активной зоне из-за кипения приближает соотношение объёмов замедлителя  и топлива к оптимальному и  приводит к увеличению размножающих свойств топлива.

В случае затеснённой активной зоны, в которой воды относительно недостаёт даже в отсутствие кипения, появление кипения будет сопровождаться снижением мощности из-за недостатка замедления нейтронов на воде и ухудшения размножающих свойств такой топливной среды.

 


Информация о работе Ядерные реакторы