Автор работы: Пользователь скрыл имя, 14 Июля 2013 в 12:47, реферат
This same bundles-within-bundles structure is replicated within the muscle cells. Within the cells of the muscle are myofibrils, which themselves are bundles of protein filaments. The term "myofibril" should not be confused with "myofiber", which is a simply another name for a muscle cell. Myofibrils are complex strands of several kinds of protein filaments organized together into repeating units called sarcomeres. The striated appearance of both skeletal and cardiac muscle results from the regular pattern of sarcomeres within their cells. Although both of these types of muscle contain sarcomeres, the fibers in cardiac muscle are typically branched to form a network. Cardiac muscle fibers are interconnected by intercalated discs, giving that tissue the appearance of a syncytium. The filaments in a sarcomere are composed of actin and myosin.
Anatomy.
Histogenesis.
Microanatomy.
Gross anatomy.
Muscular system.
Physiology.
Function.
Energy consumption.
Nervous control.
Efficiency.
Strength.
Health.
Hypertrophy.
Atrophy.
Evolution.
References.
Health
Jogging is one form of aerobic exercise. Humans are genetically predisposed with a larger percentage of one type of muscle group over another. An individual born with a greater percentage of Type I muscle fibers would theoretically be more suited to endurance events, such as triathlons, distance running, and long cycling events, whereas a human born with a greater percentage of Type II muscle fibers would be more likely to excel at anaerobic events such as a 200 meter dash, or weightlifting. Exercise. Exercise is often recommended as a means of improving motor skills, fitness, muscle and bone strength, and joint function. Exercise has several effects upon muscles, connective tissue, bone, and the nerves that stimulate the muscles. One such effect is muscle hypertrophy, an increase in size. This is used in bodybuilding.
Various exercises require a predominance of certain muscle fiber utilization over another. Aerobic exercise involves long, low levels of exertion in which the muscles are used at well below their maximal contraction strength for long periods of time (the most classic example being the marathon). Aerobic events, which rely primarily on the aerobic (with oxygen) system, use a higher percentage of Type I (or slow-twitch) muscle fibers, consume a mixture of fat, protein and carbohydrates for energy, consume large amounts of oxygen and produce little lactic acid. Anaerobic exercise involves short bursts of higher intensity contractions at a much greater percentage of their maximum contraction strength. Examples of anaerobic exercise include sprinting and weight lifting. The anaerobic energy delivery system uses predominantly Type II or fast-twitch muscle fibers, relies mainly on ATP or glucose for fuel, consumes relatively little oxygen, protein and fat, produces large amounts of lactic acid and can not be sustained for as long a period as aerobic exercise. Many exercises are partially aerobic and partially anaerobic; for example, soccer involves a combination of both.
The presence of lactic acid has an inhibitory effect on ATP generation within the muscle; though not producing fatigue, it can inhibit or even stop performance if the intracellular concentration becomes too high. However, long-term training causes neovascularization within the muscle, increasing the ability to move waste products out of the muscles and maintain contraction. Once moved out of muscles with high concentrations within the sarcomere, lactic acid can be used by other muscles or body tissues as a source of energy, or transported to the liver where it is converted back to pyruvate. In addition to increasing the level of lactic acid, strenuous exercise causes the loss of potassium ions in muscle and causing an increase in potassium ion concentrations close to the muscle fibres, in the interstitium. Acidification by lactic acid may allow recovery of force so that acidosis may protect against fatigue rather than being a cause of fatigue.
Delayed onset muscle soreness is pain or discomfort that may be felt one to three days after exercising and subsides generally within two to three days later. Once thought to be caused by lactic acid buildup, a more recent theory is that it is caused by tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Since lactic acid disperses fairly rapidly, it could not explain pain experienced days after exercise.
Hypertrophy
Independent of strength and performance measures, muscles can be induced to grow larger by a number of factors, including hormone signaling, developmental factors, strength training, and disease. Contrary to popular belief, the number of muscle fibres cannot be increased through exercise. Instead, muscles grow larger through a combination of muscle cell growth as new protein filaments are added along with additional mass provided by undifferentiated satellite cells alongside the existing muscle cells. Muscle fibres have a limited capacity for growth through hypertrophy and some believe they split through hyperplasia if subject to increased demand.
Biological factors such as age and hormone levels can affect muscle hypertrophy. During puberty in males, hypertrophy occurs at an accelerated rate as the levels of growth-stimulating hormones produced by the body increase. Natural hypertrophy normally stops at full growth in the late teens. As testosterone is one of the body's major growth hormones, on average, men find hypertrophy much easier to achieve than women. Taking additional testosterone or other anabolic steroids will increase muscular hypertrophy.
Muscular, spinal and neural factors all affect muscle building. Sometimes a person may notice an increase in strength in a given muscle even though only its opposite has been subject to exercise, such as when a bodybuilder finds her left biceps stronger after completing a regimen focusing only on the right biceps. This phenomenon is called cross education.
Atrophy. Prisoner of war exhibiting muscle loss as a result of malnutrition. Muscles may atrophy as a result of malnutrition, physical inactivity, aging, or disease.
Inactivity and starvation in mammals lead to atrophy of skeletal muscle, a decrease in muscle mass that may be accompanied by a smaller number and size of the muscle cells as well as lower protein content. Muscle atrophy may also result from the natural aging process or from disease.
In humans, prolonged periods of immobilization, as in the cases of bed rest or astronauts flying in space, are known to result in muscle weakening and atrophy. Atrophy is of particular interest to the manned spaceflight community, since the weightlessness experienced in spaceflight results is a loss of as much as 30% of mass in some muscles. Such consequences are also noted in small hibernating mammals like the golden-mantled ground squirrels and brown bats. During aging, there is a gradual decrease in the ability to maintain skeletal muscle function and mass, known as sarcopenia. The exact cause of sarcopenia is unknown, but it may be due to a combination of the gradual failure in the "satellite cells" which help to regenerate skeletal muscle fibers, and a decrease in sensitivity to or the availability of critical secreted growth factors which are necessary to maintain muscle mass and satellite cell survival. Sarcopenia is a normal aspect of aging, and is not actually a disease state yet can be linked to many injuries in the elderly population as well as decreasing quality of life.
There are also many diseases and conditions which cause muscle atrophy. Examples include cancer and AIDS, which induce a body wasting syndrome called cachexia. Other syndromes or conditions which can induce skeletal muscle atrophy are congestive heart disease and some diseases of the liver. Disease. In muscular dystrophy, the affected tissues become disorganized and the concentration of dystrophin (green) is greatly reduced. Neuromuscular diseases are those that affect the muscles and/or their nervous control. In general, problems with nervous control can cause spasticity or paralysis, depending on the location and nature of the problem. A large proportion of neurological disorders, ranging from cerebrovascular accident (stroke) and Parkinson's disease to Creutzfeldt-Jakob disease, can lead to problems with movement or motor coordination. Symptoms of muscle diseases may include weakness, spasticity, myoclonus and myalgia. Diagnostic procedures that may reveal muscular disorders include testing creatine kinase levels in the blood and electromyography (measuring electrical activity in muscles). In some cases, muscle biopsy may be done to identify a myopathy, as well as genetic testing to identify DNA abnormalities associated with specific myopathies and dystrophies. A non-invasive elastography technique that measures muscle noise is undergoing experimentation to provide a way of monitoring neuromuscular disease. The sound produced by a muscle comes from the shortening of actomyosin filaments along the axis of the muscle. During contraction, the muscle shortens along its longitudinal axis and expands across the transverse axis, producing vibrations at the surface.
Evolution. Muscles have evolved at least twice, once in cnidaria and once in bilateral; they seem to have evolved from contractile cells in sponge-grade organisms. Evolutionarily, specialized forms of skeletal and cardiac muscles predated the divergence of the vertebrate/arthropod evolutionary line. This indicates that these types of muscle developed in a common ancestor sometime before 700 million years ago (mya). Vertebrate smooth muscle was found to have evolved independently from the skeletal and cardiac muscles.
Список использованной литературы:
И. Ю. Марковина, З. К. Максимова, М. Б. Вайнштейн. Английский язык. изд. 4-ое."ГЕОТАР- Медиа". Москва-2010.
http://en.wikipedia.org и др. ресурсы интернета.