The alimentary tract

Автор работы: Пользователь скрыл имя, 22 Декабря 2013 в 20:03, реферат

Описание работы

The digestive system is a group of organs working together to convert food into energy and basic nutrients to feed the entire body. Food passes through a long tube inside the body known as the alimentary canal or the gastrointestinal tract (GI tract). The alimentary canal is made up of the oral cavity, pharynx, esophagus, stomach, small intestines, and large intestines. In addition to the alimentary canal, there are several important accessory organs that help your body to digest food.but do not have food pass through them. Accessory organs of the digestive system include the teeth, tongue, salivary glands, liver, gallbladder, and pancreas.

Содержание работы

The alimentary tract 1
Mouth and oral structures 2
Pharynx 4
Esophagus 5
Stomach 6
Small intestine 8
Large intestine 11
Rectum and anus 12
Liver 13
Biliary tract 14
Pancreas 14
General features of digestion and absorption 15

Файлы: 1 файл

англ.docx

— 58.96 Кб (Скачать файл)

Absorption and emptying

Although the stomach absorbs few of the products of digestion, it can absorb many other substances, including glucose and other simple sugars, amino acids, and some fat-soluble substances. The pH of the gastric contents determines whether some substances are absorbed. At a low pH, for example, the environment is acidic and aspirin is absorbed from the stomach almost as rapidly as water, but, as the pH of the stomach rises and the environment becomes more basic, aspirin is absorbed more slowly. Water moves freely from the gastric contents across the gastric mucosa into the blood. The net absorption of water from the stomachis small, however, because water moves just as easily from the blood across the gastric mucosa to the lumen of the stomach. The absorption of water and alcohol can be slowed if the stomach contains foodstuffs and especially fats, probably because gastric emptying is delayed by fats, and most water in any situation is absorbed from the small intestine.

The rate of emptying of the stomach depends upon the physical and chemical composition of the meal. Fluids empty more rapidly than solids, carbohydrates more rapidly than proteins, and proteins more rapidly than fats. When food particles are sufficiently reduced in size and are nearly soluble and when receptors in the duodenal bulb (the area of attachment between the duodenum and the stomach) have a fluidity and a hydrogen ion concentration of a certain level, the duodenal bulb and the second part of the duodenum relax, allowing emptying of the stomach to start. During a duodenal contraction, the pressure in the duodenal bulb rises higher than that in the antrum. The pylorus prevents reflux into the stomach by shutting. The vagus nerve has an important role in the control of emptying, but there is some indication that the sympathetic division of the autonomic nervous system is also involved. Several of the peptide hormones of the digestive tract also have an effect on intragastric pressure and gastric movements, but their role in physiological circumstances is unclear.

Small intestine

The small intestine is the principal organ of the digestive tract. The primary functions of the small intestine are mixing and transporting of intraluminal contents, production of enzymes and other constituents essential for digestion, and absorption of nutrients. Most of the processes that solubilize carbohydrates, proteins, and fats and reduce them to relatively simple organic compounds occur in the small intestine.

Anatomy

The small intestine, which is 670 to 760 cm (22 to 25 feet) in length and 3 to 4 cm (about 2 inches) in diameter, is the longest part of the digestive tract. It begins at the pylorus, the juncture with the stomach, and ends at the ileocecal valve, the juncture with the colon. The main functional segments of the small intestine are the duodenum, the jejunum, and the ileum.

The duodenum is 23 to 28 cm (9 to 11 inches) long and forms a C-shaped curve that encircles the head of the pancreas. Unlike the rest of the small intestine, it is retroperitoneal (that is, it is behind the peritoneum, the membrane lining the abdominal wall). Its first segment, known as the duodenal bulb, is the widest part of the small intestine. It is horizontal, passing backward and to the right from the pylorus, and lies somewhat behind the wide end of the gallbladder. The second part of the duodenum runs vertically downward in front of the hilum of the right kidney (the point of entrance or exit for blood vessels, nerves, and the ureters); it is into this part through the duodenal papilla (papilla of Vater) that the pancreatic juice and bile flow. The third part of the duodenum runs horizontally to the left in front of the aorta and the inferior vena cava (the principal channel for return to the heart of venous blood from the lower part of the body and the legs), while the fourth part ascends to the left side of the second lumbar vertebra (at the level of the small of the back), then bends sharply downward and forward to join the second part of the small intestine, the jejunum. An acute angle, called the duodenojejunal flexure, is formed by the suspension of this part of the small intestine by the ligament of Treitz.

The jejunum forms the upper two-fifths of the rest of the small intestine; it, like the ileum, has numerous convolutions and is attached to the posterior abdominal wall by the mesentery, an extensive fold of serous-secreting membrane. The ileum is the remaining three-fifths of the small intestine, though there is no absolute point at which the jejunum ends and the ileum begins. In broad terms, the jejunum occupies the upper and left part of the abdomen below the subcostal plane (that is, at the level of the 10th rib), while the ileum is located in the lower and right part. At its termination the ileum opens into the large intestine.

The arrangement of the muscular coats of the small intestine is uniform throughout the length of the organ. The inner, circular layer is thicker than the outer, longitudinal layer. The outermost layer of the small intestine is lined by the peritoneum.

Absorption

Although the small intestine is only 3 to 4 cm in diameter and approximately 7 metres in length, it has been estimated that its total absorptive surface area is approximately 4,500 square metres (5,400 square yards). This enormous absorptive surface is provided by the unique structure of the mucosa, which is arranged in concentric folds that have the appearance of transverse ridges. These folds, known as plicae circulares, are approximately 5 to 6 cm (2 inches) long and about 3 mm (0.1 inch) thick. Plicae circulares are present throughout the small intestine except in the first portion, or bulb, of the duodenum, which is usually flat and smooth, except for a few longitudinal folds. Also called valves of Kerckring, the plicae circulares are largest in the lower part of the duodenum and in the upper part of the jejunum. They become smaller and finally disappear in the lower part of the ileum. The folds usually run one-half to two-thirds of the way around the intestinal wall; occasionally, a single fold may spiral the wall for three or four complete turns. It has been estimated that the small intestine contains approximately 800 plicae circulares and that they increase the surface area of the lining of the small bowel by five to eight times the outer surface area. Another feature of the mucosa that greatly multiplies its surface area is that of tiny projections called villi. The villi usually vary from 0.5 to 1 mm in height. Their diameters vary from approximately one-eighth to one-third their height. The villi are covered by a single layer of tall columnar cells called goblet cells because of their rough resemblance to empty goblets after they have discharged their contents. Goblet cells are found scattered among the surface epithelial cells covering the villi and are a source of mucin, the chief constituent of mucus. At the base of the mucosal villi are depressions called intestinal glands, or Lieberkühn’s glands. The cells that line these glands continue up and over the surface of the villi. In the bottom of the glands, epithelial cells called cells of Paneth are filled with alpha granules, or eosinophilic granules, so called because they take up the rose-coloured stain eosin. Though they may contain lysozyme, an enzyme toxic to bacteria, and immunoglobins, their precise function is uncertain. There are three other cell types in the Lieberkühn’s glands: undifferentiated cells, which have the potential to undergo changes for the purpose of replacing losses of any cell type; the goblet cells mentioned above; and endocrine cells, which are described below. The main functions of the undifferentiated cells in these glands are cell renewal and secretion. Undifferentiated cells have an average life of 72 hours before becoming exhausted and being cast off. The appearance and shape of the villi vary in different levels of the small intestine. In the duodenum the villi are closely packed, large, and frequently leaflike in shape. In the jejunum the individual villus measures between 350 and 600 μm in height (there are about 25,000 μm in an inch) and has a diameter of 110 to 135 μm. The inner structure of the individual villus consists of loose connective tissue containing a rich network of blood vessels, a central lacteal (or channel for lymph), smooth muscle fibres, and scattered cells of various types. The smooth muscle cells surround the central lacteal and provide for the pumping action required to initiate the flow of lymph out of the villus. A small central arteriole (minute artery) branches at the tip of the villus to form a capillary network; the capillaries, in turn, empty into a collecting venule that runs to the bottom of the villus.

A remarkable feature of the mucosa villi is the rough, specialized surface of the epithelial cells. This plasma membrane, known as the brush border, is thicker and richer in proteins and lipids than is the plasma membrane on the epithelial cells at the side and base of the villus. Water and solutes pass through pores in the surface epithelium of the mucosa by active transport and solvent drag; i.e., solutes are carried in a moving stream of water that causes an increased concentration of solute on the side of the membrane from which the water had originally come. The size of the pores is different in the ileum from in the jejunum; this difference accounts for the various rates of absorption of water at the two sites. The enterocytes are joined near their apex by a contact zone known as a “tight junction.” These junctions are believed to have pores that are closed in the resting state and dilated when absorption is required. The brush border is fused to a layer of glycoprotein, known as the “fuzzy coat,” where certain nutrients are partly digested. It consists of individual microvilli approximately 0.1 μm in diameter and 1 μm in height; each epithelial cell may have as many as 1,000 microvilli. The microvilli play an important role in the digestion and absorption of intestinal contents by enlarging the absorbing surface approximately 25 times. They also secrete the enzymes disaccharidase and peptidase that hydrolyze disaccharides and polypeptides to monosaccharides and dipeptides to amino acids, respectively. Molecular receptors for specific substances are found on the microvilli surfaces at different levels in the small intestine. This may account for the selective absorption of particular substances at particular sites—for example, intrinsic-factor-bound vitamin B12 in the terminal ileum. Such receptors may also explain the selective absorption of iron and calcium in the duodenum and upper jejunum. Furthermore, there are transport proteins in the microvillus membrane associated with the passage of sodium ions, D-glucose, and amino acids.

Actin is found in the core of the microvillus, and myosin is found in the brush border; because contractility is a function of these proteins, the microvilli have motor activity that presumably initiates the stirring and mixing actions within the lumen of the small intestine.

Beneath the mucosa of the small intestine, as beneath that of the stomach, are the muscularis and the submucosa. The submucosa consists of loose connective tissue and contains many blood vessels and lymphatics. Brunner’s glands, located in the submucosa of the duodenum, are composed of acini (round sacs) and tubules that are twisting and have multiple branching. These glands empty into the base of Lieberkühn’s glands in the duodenum. Their exact function is not known, but they do secrete a clear fluid that contains mucus, bicarbonate, and a relatively weak proteolytic (protein-splitting) enzyme. In the submucosa of the jejunum, solitary nodules (lumps) of lymphatic tissue are located. There is more lymphatic tissue in the ileum, in aggregates of nodules known as Peyer patches.

Secretions

There are many sources of digestive secretions into the small intestine. Secretions into the small intestine are controlled by nerves, including the vagus, and hormones. The most effective stimuli for secretion are local mechanical or chemical stimulations of the intestinal mucous membrane. Such stimuli always are present in the intestine in the form of chyme and food particles. The gastric chyme that is emptied into the duodenum contains gastric secretions that will continue their digestive processes for a short time in the small intestine. One of the major sources of digestive secretion is the pancreas, a large gland that produces both digestive enzymes and hormones. The pancreas empties its secretions into the duodenum through the major pancreatic duct (duct of Wirsung) in the duodenal papilla (papilla of Vater) and the accessory pancreatic duct a few centimetres away from it. Pancreatic juice contains enzymes that digest proteins, fats, and carbohydrates. Secretions of the liver are delivered to the duodenum by the common bile duct via the gallbladder and are also received through the duodenal papilla.

The composition of the succus entericus, the mixture of substances secreted into the small intestine, varies somewhat in different parts of the intestine. Except in the duodenum, the quantity of the fluid secreted is minimal, even under conditions of stimulation. In the duodenum, for example, where the Brunner’s glands are located, the secretion contains more mucus. In general, the secretion of the small intestine is a thin, colourless or slightly straw-coloured fluid, containing flecks of mucus, water, inorganic salts, and organic material. The inorganic salts are those commonly present in other body fluids, with the bicarbonate concentration higher than it is in blood. Aside from mucus, the organic matter consists of cellular debris and enzymes, including a pepsinlike protease (from the duodenum only), an amylase, a lipase, at least two peptidases, sucrase, maltase, enterokinase, alkaline phosphatase, nucleophosphatases, and nucleocytases.

Large intestine

The large intestine, or colon, serves as a reservoir for the liquids emptied into it from the small intestine. It has a much larger diameter than the small intestine (approximately 2.5 cm, or 1 inch, as opposed to 6 cm, or 3 inches, in the large intestine), but at 150 cm (5 feet), it is less than one-quarter the length of the small intestine. The primary functions of the colon are to absorb water; to maintain osmolality, or level of solutes, of the blood by excreting and absorbing electrolytes (substances, such as sodium and chloride, that in solution take on an electrical charge) from the chyme; and to store fecal material until it can be evacuated by defecation. The large intestine also secretes mucus, which aids in lubricating the intestinal contents and facilitates their transport through the bowel. Each day approximately 1.5 to 2 litres (about 2 quarts) of chyme pass through the ileocecal valve that separates the small and large intestines. The chyme is reduced by absorption in the colon to around 150 ml (5 fluid ounces). The residual indigestible matter, together with sloughed-off mucosal cells, dead bacteria, and food residues not digested by bacteria, constitute the feces.

The colon also contains large numbers of bacteria that synthesize niacin (nicotinic acid), thiamin (vitamin B1) and vitamin K, vitamins that are essential to several metabolic activities as well as to the function of the central nervous system.

Anatomy

The large intestine can be divided into the cecum, ascending colon, transverse colon, descending colon, and sigmoid colon. The cecum, the first part of the large intestine, is a sac with a closed end that occupies the right iliac fossa, the hollow of the inner side of the ilium (the upper part of the hipbone). Guarding the opening of the ileum (the terminal portion of the small intestine) into the cecum is the ileocecal valve. The circular muscle fibres of the ileum and those of the cecum combine to form the circular sphincter muscle of the ileocecal valve. The ascending colon extends up from the cecum at the level of the ileocecal valve to the bend in the colon called the hepatic flexure, which is located beneath and behind the right lobe of the liver; behind, it is in contact with the rear abdominal wall and the right kidney. The ascending colon is covered by peritoneum except on its posterior surface. The transverse colon is variable in position, depending largely on the distention of the stomach, but usually is located in the subcostal plane—that is, at the level of the 10th rib. On the left side of the abdomen, it ascends to the bend called the splenic flexure, which may make an indentation in the spleen. The transverse colon is bound to the diaphragm opposite the 11th rib by a fold of peritoneum. The descending colon passes down and in front of the left kidney and the left side of the posterior abdominal wall to the iliac crest (the upper border of the hipbone). The descending colon is more likely than the ascending colon to be surrounded by peritoneum. The sigmoid colon is commonly divided into iliac and pelvic parts. The iliac colon stretches from the crest of the ilium, or upper border of the hipbone, to the inner border of the psoas muscle, which lies in the left iliac fossa. Like the descending colon, the iliac colon is usually covered by peritoneum. The pelvic colon lies in the true pelvis (lower part of the pelvis) and forms one or two loops, reaching across to the right side of the pelvis and then bending back and, at the midline, turning sharply downward to the point where it becomes the rectum.

The layers that make up the wall of the colon are similar in some respects to those of the small intestine; there are distinct differences, however. The external aspect of the colon differs markedly from that of the small intestine because of features known as the taeniae, haustra, and appendices epiploicae. The taeniae are three long bands of longitudinal muscle fibres, about 1 cm in width, that are approximately equally spaced around the circumference of the colon. Between the thick bands of the taeniae, there is a thin coating of longitudinal muscle fibres. Because the taeniae are slightly shorter than the large intestine, the intestinal wall constricts and forms circular furrows of varying depths called haustra, or sacculations. The appendices epiploicae are collections of fatty tissue beneath the covering membrane. On the ascending and descending colon, they are usually found in two rows, whereas on the transverse colon they form one row.

The inner surface of the colon has many crypts that are lined with mucous glands and numerous goblet cells, and it lacks the villi and plicae circulares characteristic of the small intestine. It contains many solitary lymphatic nodules but no Peyer patches. Characteristic of the colonic mucosa are deep tubular pits, increasing in depth toward the rectum.

The inner layer of muscle of the large intestine is wound in a tight spiral around the colon, so that contraction results in compartmentalization of the lumen and its contents. The spiral of the outer layer, on the other hand, follows a loose undulating course, and contraction of this muscle causes the contents of the colon to shift forward and backward. The bulk of the contents, in particular the amount of undigested fibre, influences these muscular activities.

Rectum and anus

The rectum, which is a continuation of the sigmoid colon, begins in front of the midsacrum (the sacrum is the triangular bone near the base of the spine and between the two hipbones). It ends in a dilated portion called the rectal ampulla, which in front is in contact with the rear surface of the prostate in the male and with the posterior vaginal wall in the female. Posteriorly, the rectal ampulla is in front of the tip of the coccyx (thesmallbone at the very base of the spine).

At the end of the pelvic colon, the mesocolon, the fold of peritoneum that attaches the colon to the rear wall of the abdomen and pelvis, ceases, and the rectum is then covered by peritoneum only at its sides and in front; lower down, the rectum gradually loses the covering on its sides until only the front is covered. About 7.5 cm (3 inches) from the anus, the anterior peritoneal covering is also folded back onto the bladder and the prostate or the vagina.

Near the termination of the sigmoid colon and the beginning of the rectum, the colonic taeniae spread out to form a wide external longitudinal muscle coat. At the lower end of the rectum, muscle fibres of the longitudinal and circular coats tend to intermix. The internal circular muscle coat terminates in the thick rounded internal anal sphincter muscle. The smooth muscle fibres of the external longitudinal muscle coat of the rectum terminate by interweaving with striated muscle fibres of the levator ani, or pelvic diaphragm, a broad muscle that forms the floor of the pelvis. A second sphincter, the external anal sphincter, is composed of striated muscle and is divided into three parts known as the subcutaneous, superficial, and deep external sphincters. Thus, the internal sphincter is composed of smooth muscle and is innervated by the autonomic nervous system, while the external sphincters are of striated muscle and have somatic (voluntary) innervation provided by nerves called the pudendal nerves.

The mucosal lining of the rectum is similar to that of the sigmoid colon but becomes thicker and better supplied with blood vessels, particularly in the lower rectum. Arterial blood is supplied to the rectum and anus by branches from the inferior mesenteric artery and the right and left internal iliac arteries. Venous drainage from the anal canal and rectum is provided by a rich network of veins called the internal and external hemorrhoidal veins.

Two to three large crescentlike folds known as rectal valves are located in the rectal ampulla. These valves are caused by an invagination, or infolding, of the circular muscle and submucosa. The columnar epithelium of the rectal mucosa, innervated by the autonomic nervous system, changes to the stratified squamous (scalelike) type, innervated by the peripheral nerves, in the lower rectum a few centimetres above the pectinate line, which is the junction between the squamous mucous membrane of the lower rectum and the skin lining the lower portion of the anal canal.

Once or twice in 24 hours, a mass peristaltic movement shifts the accumulated feces onward from the descending and sigmoid sectors of the colon. The rectum is normally empty, but when it is filled with gas, liquids, or solids to the extent that the intraluminal pressure is raised to a certain level, the impulse to defecate occurs.

The musculus puborectalis forms a sling around the junction of the rectum with the anal canal and is maintained in a constant state of tension. This results in an angulation of the lower rectum so that the lumen of the rectum and the lumen of the anal canal are not in continuity, a feature essential to continence. Continuity is restored between the lumina of the two sectors when the sling of muscle relaxes, and the longitudinal muscles of the distal and pelvic colon contract. The resulting shortening of the distal colon tends to elevate the pelvic colon and obliterates the angle that it normally makes with the rectum. The straightening and shortening of the passage facilitates evacuation.

The act of defecation is preceded by a voluntary effort, which, in turn, probably gives rise to stimuli that magnify the visceral reflexes, although these originate primarily in the distension of the rectum. Centres that control defecation reflexes are found in the hypothalamus of the brain, in two regions of the spinal cord, and in the ganglionic plexus of the intestine. As the result of these reflexes, the internal anal sphincter relaxes.

Liver

The liver is not only the largest gland in the body but also the most complex in function. The major functions of the liver are to participate in the metabolism of protein, carbohydrates, and fat; to synthesize cholesterol and bile acids; to initiate the formation of bile; to engage in the transport of bilirubin; to metabolize and transport certain drugs; and to control transport and storage of carbohydrates.

Gross anatomy

The liver lies under the lower right rib cage and occupies much of the upper right quadrant of the abdomen, with a portion extending into the upper left quadrant. The organ weighs from 1.2 to 1.6 kg (2.6 to 3.5 pounds) and is somewhat larger in men than in women. Its greatest horizontal measurement ranges from 20 to 22 cm (approximately 8 inches); vertically, it extends 15 to 18 cm, and in thickness it ranges from 10 to 13 cm. The liver is divided into two unequal lobes: a large right lobe and a smaller left lobe. The left lobe is separated on its anterior (frontal) surface by the dense falciform (sickle-shaped) ligament that connects the liver to the undersurface of the diaphragm. On the inferior surface of the liver, the right and left lobes are separated by a groove containing the teres ligament, which runs to the navel. Two small lobes, the caudate and the quadrate, occupy a portion of the inferior surface of the right lobe. The entire liver, except for a small portion that abuts the right leaf of the diaphragm, is enveloped in a capsule of tissue that is continuous with the parietal peritoneum that lines the abdominopelvic walls and diaphragm.

Информация о работе The alimentary tract