Автор работы: Пользователь скрыл имя, 03 Декабря 2012 в 10:35, реферат
Перевод технического текста на тему "Тепловые электрические станции" с толковым и терминологическим словарем. Количество слов 2000
1. Оригинальный текст 2
2. Перевод 6
3. Терминологический словарь 13
4. Толковый словарь 14
5. Реферат по тексту «Тепловые электрические станции» 16
Список литературы 18
Содержание
1. Оригинальный текст 2
2. Перевод 6
3. Терминологический словарь 13
4. Толковый словарь 14
5. Реферат по тексту «Тепловые электрические станции» 16
Список литературы 18
Thermal power station
A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due to the different fuel sources. Some prefer to use the term energy center because such facilities convert forms of heat energy into electricity.[1] Some thermal power plants also deliver heat energy for industrial purposes, for district heating, or for desalination of water as well as delivering electrical power. A large part of human CO2 emissions comes from fossil fueled thermal power plants; efforts to reduce these outputs are various and widespread.
Introductory overview
Almost all coal, nuclear, geothermal, solar thermal electric, and waste incineration plants, as well as many natural gas power plants are thermal. Natural gas is frequently combusted in gas turbines as well as boilers. The waste heat from a gas turbine can be used to raise steam, in a combined cycle plant that improves overall efficiency. Power plants burning coal, fuel oil, or natural gas are often called fossil-fuel power plants. Some biomass-fueled thermal power plants have appeared also. Non-nuclear thermal power plants, particularly fossil-fueled plants, which do not use co-generation are sometimes referred to as conventional power plants.
Commercial electric utility power stations are usually constructed on a large scale and designed for continuous operation. Electric power plants typically use three-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz. Large companies or institutions may have their own power plants to supply heating or electricity to their facilities, especially if steam is created anyway for other purposes. Steam-driven power plants have been used in various large ships, but are now usually used in large naval ships. Shipboard power plants usually directly couple the turbine to the ship's propellers through gearboxes. Power plants in such ships also provide steam to smaller turbines driving electric generators to supply electricity. Shipboard steam power plants can be either fossil fuel or nuclear. Nuclear marine propulsion is, with few exceptions, used only in naval vessels. There have been perhaps about a dozen turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion.
Combined heat and power (CH&P) plants, often called co-generation plants, produce both electric power and heat for process heat or space heating. Steam and hot water lose energy when piped over substantial distance, so carrying heat energy by steam or hot water is often only worthwhile within a local area, such as a ship, industrial plant, or district heating of nearby buildings.
History
Reciprocating steam engines have been used for mechanical power sources since the 18th Century, with notable improvements being made by James Watt. The very first commercial central electrical generating stations in the Pearl Street Station, New York and the Holborn Viaduct power station, London, in 1882, also used reciprocating steam engines. The development of the steam turbine allowed larger and more efficient central generating stations to be built. By 1892 it was considered as an alternative to reciprocating engines [2] Turbines offered higher speeds, more compact machinery, and stable speed regulation allowing for parallel synchronous operation of generators on a common bus. Turbines entirely replaced reciprocating engines in large central stations after about 1905. The largest reciprocating engine-generator sets ever built were completed in 1901 for the Manhattan Elevated Railway. Each of seventeen units weighed about 500 tons and was rated 6000 kilowatts; a contemporary turbine-set of similar rating would have weighed about 20% as much.[3]
Efficiency
The energy efficiency of a conventional thermal power station, considered as salable energy as a percent of the heating value of the fuel consumed, is typically 33% to 48%. This efficiency is limited as all heat engines are governed by the laws of thermodynamics. The rest of the energy must leave the plant in the form of heat. This waste heat can go through a condenser and be disposed of with cooling water or in cooling towers. If the waste heat is instead utilized for district heating, it is called co-generation. An important class of thermal power station are associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas and in these plants, freshwater production and electricity are equally important co-products.
The Carnot efficiency dictates that higher efficiencies can be attained by increasing the temperature of the steam. Sub-critical fossil fuel power plants can achieve 36–40% efficiency. Super critical designs have efficiencies in the low to mid 40% range, with new "ultra critical" designs using pressures of 4400 psi (30.3 MPa) and multiple stage reheat reaching about 48% efficiency. Above the critical point for water of 705 °F (374 °C) and 3212 psi (22.06 MPa), there is no phase transition from water to steam, but only a gradual decrease in density.
Current nuclear power plants must operate below the temperatures and pressures that coal-fired plants do, since the pressurized vessel is very large and contains the entire bundle of nuclear fuel rods. The size of the reactor limits the pressure that can be reached. This, in turn, limits their thermodynamic efficiency to 30–32%. Some advanced reactor designs being studied, such as the Very high temperature reactor, Advanced gas-cooled reactor and Super critical water reactor, would operate at temperatures and pressures similar to current coal plants, producing comparable thermodynamic efficiency.
Electricity cost
The direct cost of electric energy produced by a thermal power station is the result of cost of fuel, capital cost for the plant, operator labour, maintenance, and such factors as ash handling and disposal. Indirect, social or environmental costs such as the economic value of environmental impacts, or environmental and health effects of the complete fuel cycle and plant decommissioning, are not usually assigned to generation costs for thermal stations in utility practice, but may form part of an environmental impact assessment
Boiler and steam cycle
In fossil-fueled power plants, steam generator refers to a furnace that burns the fossil fuel to boil water to generate steam.
In the nuclear plant field, steam generator refers to a specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which generates steam. In a nuclear reactor called a boiling water reactor (BWR), water is boiled to generate steam directly in the reactor itself and there are no units called steam generators.
In some industrial settings, there can also be steam-producing heat exchangers called [[heat recovery steam generators (HRSG) which utilize heat from some industrial process. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator.
Geothermal plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids.
A fossil fuel steam generator includes an economizer, a steam drum, and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to avoid excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan, Air Preheater (AP), boiler furnace, induced draft (ID) fan, fly ash collectors (electrostatic precipitator or baghouse) and the flue gas stack
Feed water heating and deaeration
The feed water used in the steam boiler is a means of transferring heat energy from the burning fuel to the mechanical energy of the spinning steam turbine. The total feed water consists of recirculated condensate water and purified makeup water. Because the metallic materials it contacts are subject to corrosion at high temperatures and pressures, the makeup water is highly purified before use. A system of water softeners and ion exchange demineralizers produces water so pure that it coincidentally becomes an electrical insulator, with conductivity in the range of 0.3–1.0 microsiemens per centimeter. The makeup water in a 500 MWe plant amounts to perhaps 20 US gallons per minute (1.25 L/s) to offset the small losses from steam leaks in the system.
The feed water cycle begins with condensate water being pumped out of the condenser after traveling through the steam turbines. The condensate flow rate at full load in a 500 MW plant is about 6,000 US gallons per minute (400 L/s).
Diagram of boiler feed water deaerator (with vertical, domed aeration section and horizontal water storage section).
The water flows through a series of six or seven intermediate feed water heaters, heated up at each point with steam extracted from an appropriate duct on the turbines and gaining temperature at each stage. Typically, the condensate plus the makeup water then flows through a deaerator[7][8] that removes dissolved air from the water, further purifying and reducing its corrosiveness. The water may be dosed following this point with hydrazine, a chemical that removes the remaining oxygen in the water to below 5 parts per billion (ppb).[vague] It is also dosed with pH control agents such as ammonia or morpholine to keep the residual acidity low and thus non-corrosive.
Boiler operation
The boiler is a rectangular furnace about 50 feet (15 m) on a side and 130 feet (40 m) tall. Its walls are made of a web of high pressure steel tubes about 2.3 inches (58 mm) in diameter.
Pulverized coal is air-blown into the furnace from fuel nozzles at the four corners and it rapidly burns, forming a large fireball at the center. The thermal radiation of the fireball heats the water that circulates through the boiler tubes near the boiler perimeter. The water circulation rate in the boiler is three to four times the throughput and is typically driven by pumps. As the water in the boiler circulates it absorbs heat and changes into steam at 700 °F (370 °C) and 3,200 psi (22,000 kPa). It is separated from the water inside a drum at the top of the furnace. The saturated steam is introduced into superheat pendant tubes that hang in the hottest part of the combustion gases as they exit the furnace. Here the steam is superheated to 1,000 °F (540 °C) to prepare it for the turbine.
Plants designed for lignite (brown coal) are increasingly used in locations as varied as Germany, Victoria, Australia and North Dakota. Lignite is a much younger form of coal than black coal. It has a lower energy density than black coal and requires a much larger furnace for equivalent heat output. Such coals may contain up to 70% water and ash, yielding lower furnace temperatures and requiring larger induced-draft fans. The firing systems also differ from black coal and typically draw hot gas from the furnace-exit level and mix it with the incoming coal in fan-type mills that inject the pulverized coal and hot gas mixture into the boiler.
Plants that use gas turbines to heat the water for conversion into steam use boilers known as heat recovery steam generators (HRSG). The exhaust heat from the gas turbines is used to make superheated steam that is then used in a conventional water-steam generation cycle, as described in gas turbine combined-cycle plants section below.
Boiler furnace and steam drum
The water enters the boiler through a section in the convection pass called the economizer. From the economizer it passes to the steam drum. Once the water enters the steam drum it goes down to the lower inlet water wall headers. From the inlet headers the water rises through the water walls and is eventually turned into steam due to the heat being generated by the burners located on the front and rear water walls (typically). As the water is turned into steam/vapor in the water walls, the steam/vapor once again enters the steam drum. The steam/vapor is passed through a series of steam and water separators and then dryers inside the steam drum. The steam separators and dryers remove water droplets from the steam and the cycle through the water walls is repeated. This process is known as natural circulation.
The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers, water lancing and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after a trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal.
The steam drum (as well as the super heater coils and headers) have air vents and drains needed for initial start up. The steam drum has internal devices that removes moisture from the wet steam entering the drum from the steam generating tubes. The dry steam then flows into the super heater coils.
Тепловая электрическая станция
Тепловая электрическая станция это электростанция в котором первичный двигатель приводится в действие при помощи пара. Вода нагревается, прерващаясь в пар и раскручивает паровую турбину котороая в свою очередь вращает электрический генератор. После того как пар проходит через турбину, он конденсируется в конденсаторе и возвращается в ту часть цикла где его нагревают. Этот цикл называется циклом Ренкина. Главные различия в конструкции станции зависят от разных источников топлива. Некоторые предпочитают использовать термин энергетический центр (теплоэлектроцентраль) потому что такие виды станции конвертируют тепловую энергию в электричество и тепло. Некторые теплостанции так же доставляют тепловую энергию для производственных целей, для районного отопления, для обессоливания воды, а так же и электрическую энергию. Большая часть выбросов СО2 исходит от теплостанции использующих ископаемое топливо (уголь,газ). Методы понижения выбросов очень разные и широко распространены.
Вводный обзор
Почти все угольные, атомные,
геотермальные, солнечные, и станции
на сжигании отходов, так же как и
многие газовые электрические станции
относятся к тепловым. Природный
газ часто сжигается в газовых
турбинах, так же как и в котлах.
Выхлопные горячие газы выходящие
из газовой турбины могут быть
использованы для получения пара
в комбинированном цикле, который
повышает общий тепловой КПД. Станции
сжигающие уголь, топливную нефть
или природный газ обычно называются
станциями на природных горючих.
Так же появились станции использующие
биотопливо. Не атомные тепловые электрические
станции, частично станции на ископаемомо
топливе, и не используют когенерация
часто относят к обычным(
Станции для коммерческого
производства электрическая обычно
строятся в больших масштабах
и предназначаются для
История
Поршневые паровые двигатели использовались как источник механической энергии с 18 века, с заметными улучшениями сделанными Джеймсом Ваттом. Первая коммерческая центральная электрическая станция была построена на Станции Перл Стрит, в городе Нью-Йорк и Холборн Виадуктовая (Путепроводная) электрическая станция в городе Лондон в 1882, которая так же использовала поршневые паровые двигатели. Изобретение паровых турбин позволило построить центральные электростанции больших размеров и увеличить эффективность. К 1892 они стали считаться альтернативой к поршневым двигателям. Турбины позволяли достичь больших скоростей, более компактную машинную часть, показывали стабильность в регулировании скоростей тем самым позволяя делать параллельную синхронизированную работу генераторов на одной шине. Турбины полностью заменили поршневые двигатели в больших станциях примерно после 1905 года. Самые большие поршневые двигатель-генераторы были построены 1901 году для Манхэттенской надземной железной дорогой. Каждая из семнадцати установок весила 500 тонн и обладало мощность в 6000 квт, для сравнения паровая турбина такой же мощности весила бы на 20 процентов меньше.
Эффективность
Энергетическая эффективность обычной тепловой электрической станции, принятой как энергия которую можно продать как процент от тепла переданного сгоревшим топливом, и обычно составляет от 33% до 48%. Эта эффективность или КПД это ограничение всех тепловых двигателей который описывается законами термодинамики. Оставшаяся часть энергии должна покинуть станции в виде тепла. Отходящая теплота может пойти через конденсатор и сконденсироваться при помощи охлаждающей водой или в градирне. Если же отходящая теплота в виде выхлопных газов утилизируется для районного отопления, это называется когенерацией. Важным классом тепловых электрических станций являются обессоливающие станции, они обычно находятся в засушливых странах с большими запасами природного газа, и в этих станциях производство питьевой воды и электричества примерно одинаковы по значимости.
КПД по теории Карно может быть увеличено повышением температуры пара. До критические электростанции работающие ископаемых видах топлива достигают КПД 40 %. Сверхкритические конструкции станций позволяют достигать в нижнем и среднем диапазоне значений КПД 40 %, с новым ультра критическими конструкциями работающими 4400 psi (30 мпа) и многоуровневыми подогревами достигается КПД 48%. Точка выше критической для воды это температура 705 °F (374 °C) и давление 3212 psi (22.06 мпа), в такой точке нет фазовых переходов между паром и водой, только постепенное снижение плотности.
Настоящие ядерные электростанции работают на температурах и давления ниже чем на тех на которых работают угольные станции, так как сосуды под давлением очень большие и содержат себе топливные стержни. Размер реактора ограничивает возможное давление. Это в свою очередь ограничивает термодинамическое КПД, которое равно 30–32%. Изучаются новые конструкции реакторов, такие как Высокотемпературный реактор, высокоэффективный газо-охлаждающий реактор и Сверхкритический водяной реактор, который будут работать на температурах и давлениях равным настоящим угольным станциям, тем самым показывая сопоставимый уровень КПД.
Стоимость электричества
Прямая стоимость