Автор работы: Пользователь скрыл имя, 21 Мая 2015 в 16:24, реферат
Цвета также принято разделять на теплые и холодные. К теплым относят желтый, желто-оранжевый, красный, красно-оранжевый и производные от них. К холодным — голубой, синий, фиолетовый, сине-зеленый и сине-фиолетовый цвета. Интересно, что в зависимости от составляющих один и тот же цвет (по общему названию) может быть как холодным, так и теплым. Например, зеленый цвет с примесью синего будет холодным, а с желтым приобретет «теплоту». Теплые цвета кажутся близкими, поэтому их еще называют выступающими, а холодные воспринимаются далекими - отступающими.
ВВЕДЕНИЕ
1. БИОФИЗИКА ЦВЕТОВОГО ЗРЕНИЯ
1.1 Цвет и измерение цвета
1.2 Теория цветового зрения
1.3 Нарушение цветового зрения
2. ЦВЕТОВАЯ СРЕДА
2.1 Основные принципы формирования цветовой среды
2.2 Зрительные искажения величин предметов с помощью цвета
3. ЦВЕТ В ИНТЕРЬЕРЕ
3.1 Физика цвета в интерьере на примере восприятие определенного цвета
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
С точки зрения физики свет представляет собой один из видов электромагнитного излучения, испускаемого светящимися телами, а также возникающего в результате ряда химических реакций. Это электромагнитное излучение имеет волновую природу, т.е. распространяется в пространстве в виде периодических колебаний (волн), совершаемых им с определенной амплитудой и частотой. Если представить такую волну в виде графика, то получится синусоида. Расстояние между двумя соседними вершинами этой синусоиды называется длиной волны и измеряется в нанометрах (нм) и представляет собой расстояние, на которое распространяется свет за период одного колебания.
Человеческий глаз способен воспринимать
(видеть) электромагнитное излучение только
в узком диапазоне длин волн, ограниченного
участком от 380 до 760 нм, который называется
участком видимых длин волн, собственно
и составляющих свет. Излучения до 380 и
выше 760 нм мы не видим, но они могут восприниматься
нами другими механизмами осязания (как,
например, инфракрасное излучение) либо
регистрироваться специальными приборами
(рис. 1.1).
Рис. 1.1. Спектр электромагнитных
излучений и спектр видимого света
В зависимости от длины волны, световое излучение воспринимается человеческим глазом окрашенным в тот или иной цвет (правильнее сказать, вызывает у человека ощущение того или иного цвета) от фиолетового до красного (табл. 1.1). Эта способность определяет возможность цветового видения человека.
Спектр как характеристика цвета
В природе излучение от различных источников света либо предметов редко является монохроматичным, т.е. представленным излучением только одной определенной длины волны, и имеет довольно сложный спектральный состав, т.е. в нем присутствуют излучения самых различных длин волн. Если представить эту картину в виде графика, где по оси ординат будет отложена длина волны, а по оси абсцисс — интенсивность, то мы получим зависимость, называемую цветовым спектром излучения или просто спектром цвета. Для окрашенных поверхностей спектр цвета определяется как зависимость коэффициента отражения ρ от длины волны λ, для прозрачных материалов — коэффициента пропускания τ от длины волны, а для источников света -— интенсивности излучения от длины волны. Примеры цветовых спектров различных источников света и материалов приведены на рис. 1.2 и рис. 1.3.
Рис. 1.2. Кривые спектра отражения различных красок: изумрудной зелени, красной киновари, ультрамарина Рис. 1.3. Примеры спектральных распределений интенсивностей излучения различных источников света: свет от ясного голубого неба, среднедневной солнечный свет, свет лампы накаливания.
По форме спектральной кривой можно судить о цвете излучения, отраженного от поверхности предмета или испущенного самосветящимся источником света. Чем более будет стремиться эта кривая к прямой линии, тем более цвет излучения будет казаться серым. Чем меньше либо больше будет амплитуда спектра, тем цвет излучения предмета будет менее или более ярким. Если спектр излучения равен нулю на всем диапазоне за исключением определенной узкой его части, мы будем наблюдать так называемый чистый спектральный цвет, соответствующий монохроматическому излучению, испускаемому в очень узком диапазоне длин волн. Рис. 1.4. Излучение от поверхности, окрашенной изумрудной зеленью, при освещении светом лампы накаливания.По графику видно, что цвет красителя при освещении светом лампы.
В результате сложных процессов взаимодействия светового потока с атмосферой, окружающими предметами и другими световыми потоками энергетический спектр излучения реальных предметов, как правило, приобретает гораздо более сложную форму. В природе фактически нельзя встретить чистых цветов. К примеру, даже если принять излучение солнца в полдень за эталон белого цвета, то и он на самом деле окажется не белым, а имеющим ту или иную окраску, возникающую в следствие изменения спектрального состава солнечного излучения в процессе его прохождения сквозь толщу земной атмосферы: молекулы воздуха, а также находящиеся в атмосфере частички пыли и воды взаимодействуют с потоком солнечного излучения, причем в зависимости от длины волны этот процесс происходит менее или более интенсивно. Поэтому в вечерние и утренние часы, когда солнце находится низко над горизонтом и солнечные лучи должны проходить большее расстояние в атмосфере, чем в полдень, солнечный свет кажется нам не белым, а желтоватым, а освещенные им предметы — окрашенными в различные оттенки желтого, оранжевого, розового и красного. Это происходит из-за того, что атмосфера поглощает коротковолновую (условно синюю) и свободно пропускает длинноволновую (условно красную) составляющую излучения солнца. Таким образом, получается, что цвет предметов напрямую зависит от источника света, освещающего поверхность данного предмета. Точнее, световое излучение, отраженное от поверхности предмета либо прошедшее через нее и формирующее в зрительном аппарате ощущение цвета этого предмета, определяется как свойствами самого предмета отражать либо поглощать свет в зависимости от длины волны, так и свойствами источника света, используемого для освещения этого предмета, изменять интенсивность излучения в зависимости от длины волны (рис. 1.4). Поэтому при проведении цветовых измерений необходимо всегда учитывать используемое при этом освещение и по возможности пользоваться только стандартными источниками света, причем не использовать сразу несколько разнотипных источников. То же самое касается любых работ с цветными изображениями, когда необходимо обеспечить высокую точность цветопередачи.
Феномен цветового видения
При проведении своего знаменитого опыта по разложению солнечного света в спектр Ньютон сделал очень важное наблюдение: несмотря на то, что спектральные цвета плавно переходилили друг в друга, пробегая целую массу всевозможных цветовых оттенков, фактически все это многообразие цветов оказалось возможным свести к семи цветам, которые были названы им первичными: красному, желтому, оранжевому, желтому, зеленому, голубому, синему и фиолетовому. Впоследствии различными исследователями было показано, что число этих цветов можно сократить до трех, а именно до красного, зеленого и синего. Действительно, желтый и оранжевый есть комбинация зеленого и красного, голубой — зеленого и синего. Тоже самое касается всех остальных цветовых тонов, которые могут быть получены комбинацией красного, зеленого и синего цветов, названных поэтому основными цветами.
Юнг и Гемгольц, занимавшиеся исследованиями цветового зрения, предположили, что подобные явления объясняются наличием в аппарате человеческого зрения трех цветочувствительных анализаторов, каждый из которых ответственен за восприятие красного, зеленого и синего световых излучений, попадающих в глаз. Позже это предположение получило достаточно веские научные подтверждения и легло в основу трехкомпонентной теории цветового зрения, которая объясняет феномен видения цвета существованием в глазу человека трех типов цветоощущающих клеток, чувствительных к свету различного спектрального состава.
Эти клетки действительно удалось увидеть в сетчатке глаза и поскольку под микроскопом они предстали в виде округлых продолговатых тел несколько неправильной формы, они были названы колбочками. Колбочки подразделяются на три типа в зависимости от того, к излучению какого спектрального состава они чувствительны, и обозначаются греческими буквами β (бета), γ (гамма) и ρ (ро). Первый тип (β) имеет максимум чувствительности к световым волнам с длиной от 400 до 500 нм (условно «синяя» составляющая спектра), второй (γ) — к световым волнам от 500 до 600 нм (условно «зеленая» составляющая спектра) и третий (ρ) — к световым волнам от 600 до 700 нм (условно «красная» составляющая спектра) (рис. 1.5 б). В зависимости от того, световые волны какой длины и интенсивности присутствуют в спектре света, те или иные группы колбочек возбуждаются сильнее или слабее.
Рис. 1.5. Кривая относительной световой эффективности палочек (пунктирная линия) и колбочек (а) и кривые спектральной чувствительности колбочек, нормированные к единице (б)
Также было установлено наличие других клеток, которые не имеют чувствительности к строго определенным спектральным излучениям и реагируют на весь поток светового излучения. Поскольку под микроскопом эти клетки видны как удлиненные тела, их назвали палочками.
У взрослого человека насчитывается около 110—125 млн. палочек и около 6—7 млн. колбочек (соотношение 1:18). Условно говоря, видимое нами изображение, также как и изображение цифровое, дискретно. Но поскольку число элементов изображения очень большое, мы этого просто не ощущаем.
Интересно отметить и другую особенность. Световая чувствительность палочек намного выше чувствительности колбочек и потому в сумерках или ночью, когда интенсивность попадающего в глаз излучения становится очень низкой, колбочки перестают работать и человек видит только за счет палочек. Потому в это время суток, а также в условиях низкого освещения, человек перестает различать цвета и мир предстает перед ним в черно-белых (сумрачных) тонах. Причем световая чувствительность человеческого глаза настолько высока, что намного превосходит возможности большинства существующих систем регистрации изображения. Человеческий глаз способен реагировать на поток светового излучения порядка 10–16Вт/см.кв. Если бы мы захотели использовать эту энергию для нагревания воды, то для того, чтобы нагреть один кубический сантиметр воды на 1°, на это потребовался бы 1 млн. лет. Если выразить чувствительность человеческого глаза в единицах чувствительности фотопленки, то она будет эквивалентна фотопленке с чувствительностью 15 млн. единиц ASA.
Чувствительность палочек и колбочек к световому потоку в зависимости от длины волны описывается кривыми спектральной чувствительности человеческого глаза (рис. 1.5 б). Для характеристики общей спектральной чувствительности человеческого глаза к потоку светового излучения используется относительная кривая световой эффективности, либо, как ее еще называют, кривая видности, глаза, определяющая соответственно общую чувствительность человеческого глаза к свету с учетом цветового (колбочки) или светового (палочки) зрения (рис. 1.5 а). Эти зависимости представляют большой интерес для специалистов, поскольку позволяют объяснить ряд известных феноменов человеческого зрения.
Так, по этим кривым можно видеть, что человек очень хорошо способен воспринимать зеленые и зелено-желтые цвета, в то время как его чувствительность к синим цветам заметно ниже.
Ситуация несколько меняется в сумерках, когда чувствительные к яркому световому излучению колбочки начинают терять свою эффективность и соотношение между палочками и колбочками изменяется — максимум спектральной световой эффективности смещается в сторону синих излучений (палочковое зрение).
Другая интересная особенность заключается в том, что глазному хрусталику труднее фокусироваться на предметы, если они окрашены в сине-фиолетовые тона. Это объясняется падением спектральной чувствительности глаза в этих областях спектра. Поэтому очки иногда делают не нейтрально-прозрачными, а из окрашенных в желтый либо коричневый цвет стекол, которые фильтруют сине-фиолетовую составляющую спектра.
Из-за того, что кривые спектральной чувствительности частично перекрываются, человек может сталкиваться с определенными сложностями при различении некоторых чистых цветов. Так, из-за того что кривая спектральной чувствительности колбочек типа r (условно чувствительных к красной части спектра) сохраняет некоторую чувствительность в области сине-фиолетовых цветов, нам кажется, что синие и фиолетовые цвета имеют примесь красного.
Влияет на восприятие цвета и общая световая чувствительность глаза. Поскольку кривая относительной световой эффективности представляет собой гауссиану с максимумом в точке 550 нм (для дневного зрения), то цвета по краям спектра (синие и красные) воспринимаются нами менее яркими, чем цвета, занимающие центральное положение в спектре (зеленый, желтый, голубой).
Поскольку спектральная чувствительность человеческого глаза неравномерна по всей области спектра, при ощущении цвета могут возникать явления, когда два разных цвета, имеющих разные спектральные распределения, будут нам казаться одинаковыми за счет того, что вызывают одинаковое возбуждение глазных рецепторов. Такие цвета называются метамерными, а описанное явление — метамерией. Оно часто наблюдается, когда та или иная окрашенная поверхность рассматривается нами при разных источниках освещения, свет которых взаимодействуя с поверхностью, изменяет спектр ее цвета. В этом случае, например, белая ткань может при дневном свете выглядеть белой, а при искусственном освещении менять свой оттенок. Либо два предмета, имеющие разные спектры отражения, и, соответственно, которые должны иметь разный цвет, на самом деле воспринимается нами одинаковыми, поскольку вызывают однозначное возбуждение трех цветоощущающих центров глаза. Причем, если мы попытаемся воспроизвести цвет этих предметов, скажем, на фотопленке, использующей отличный от зрительного аппарата человека механизм регистрации изображения, эти два предмета скорее всего окажутся имеющими различную окраску.
Рис. 1.6. Иллюстрация явления метамерии
Три цветовых образца имеющих разный спектральный коэффициент отражения кажутся при освещении их дневным светом одинаковыми. При воспроизведении этих образцов на фотопленке, спектральная чувствительность которой отлична от спектральной чувствительности зрительного аппарата человека, либо при изменении освещения они меняют свой цвет и становятся разноокрашенными.
На использовании явления метамерии основана вся современная технология воспроизведения цветного изображения: не имея возможности в цветной репродукции в точности повторить спектр того или иного цвета, наблюдаемый в естественных условиях, он заменяется цветом, синтезированным с помощью определенного набора красок или излучателей и имеющим отличное спектральное распределение, но вызывающим у зрителя те же самые цветовые ощущения.