Диэлектрические материалы

Автор работы: Пользователь скрыл имя, 07 Января 2013 в 04:07, творческая работа

Описание работы

Все вещества по электрическим свойствам условно делятся на три группы - проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов. В отличие от диэлектриков в проводниках электрического тока электрические заряды не имеют таких связей, поэтому в проводниках электроны могут свободно перемещаться, создавая явление электрического тока.

Содержание работы

Введение
1.Свойства диэлектриков.
1.1 Влажностные свойства диэлектриков
1.2 Тепловые свойства диэлектриков
1.3 Химические свойства диэлектриков
2. Пробой диэлектриков
3. Диэлектрические потери полимеров
Список используемых источников

Файлы: 1 файл

Презентация Microsoft PowerPoint.pptx

— 849.32 Кб (Скачать файл)

 Диэлектрические                                                      материалы

 

Выполнила студентка 2 курса очной 

 формы обучения 

Специальности «сервис»

Нефёдова Оксана.

Проверил преподаватель:

Синицына Л.В

Содержание

 

 

    • Введение
    • 1.Свойства диэлектриков.
    • 1.1 Влажностные свойства диэлектриков
    • 1.2 Тепловые свойства диэлектриков
    • 1.3 Химические свойства диэлектриков
    • 2. Пробой диэлектриков
    • 3. Диэлектрические потери полимеров
    • Список используемых источников.

 

 

Введение

 

    • Все вещества по электрическим свойствам условно делятся на три группы - проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов. В отличие от диэлектриков в проводниках электрического тока электрические заряды не имеют таких связей, поэтому в проводниках электроны могут свободно перемещаться, создавая явление электрического тока. Практически в диэлектриках в силу ряда причин всегда имеется некоторое количество слабо связанных зарядов, способных перемещаться внутри вещества на большие расстояния. Иными словами, диэлектрики не являются абсолютными непроводниками электрического тока. Однако в нормальных условиях таких зарядов в диэлектриках очень мало, и обусловленный ими электрический ток, называемый током утечки, невелик. Проводимость диэлектриков проводимости проводников. Обычно к диэлектрикам относятся вещества, имеющие удельную электрическую проводимость не больше 10-7 - 10-8 См/м, проводникам - имеющие проводимость больше 107 См/м. К диэлектрикам относятся все газы (включая пары металлов), многие жидкости, кристаллические, стеклообразные, керамические, полимерные вещества. Поскольку свойства вещества сильно зависят от его агрегатного состояния, обычно рассматривают отдельно физические явления в газообразных, жидких и твёрдых диэлектриках.

1.Свойства диэлектриков. 
1.1  Влажностные свойства диэлектриков  

 

Влажность материалов.

 

    • Образец электроизоляционного материала, помещенный в условиях определенной влажности и температуры окружающей среды, через неограниченно большое время достигает некоторого равновесного состояния влажности.
    • Определение влажности электроизоляционных материалов весьма важно для уточнения условий, при которых производится испытание электрических свойств данного материала. Для текстильных и тому подобных материалов устанавливается так называемая кондиционная влажность, соответствующая равновесной влажности материала при нахождении его в воздухе в нормальных условиях. На гигроскопичность материала существенное влияние оказывает строение и химическая природа. Большую роль играют наличие и размер капиллярных промежутков внутри материала, в которых проникает влага. Сильно пористые материалы, в частности волокнистые, более гигроскопичны, чем материалы плотного строения.
    • Определение гигроскопичности по увеличению массы увлажняемого образа хотя и дает некоторое представление о способности материала поглощать влагу, но не полностью отражает степень изменения электрических свойств этого материала при увлажнении. В том случае, если поглощенная влага способна образовывать нити или пленки по толщине изоляции, которые могут пронизывать весь промежуток между электродами (или значительную область между промежутками), уже весьма малые количества поглощенной влаги приводят к резкому ухудшению электрических свойств изоляции. Если же влага распределяется по объему материала в виде отдельных, не соединяющихся между собой малых включений, то влияние влаги на электрические свойства ма

Влагопроницаемость

 

 

Кроме гигроскопичности, большое практическое значение имеет влагопроницаемость электроизоляционных материалов, т.е. способность их пропускать сквозь себя пары воды. Эта характеристика чрезвычайно важна для оценки качества материалов, применяемых для защитных покровов. Благодаря наличию мельчайшей пористости большинство материалов обладает поддающейся измерению влагопроницаемостью.

Для уменьшения гигроскопичности и влагопроницаемости пористых изоляционных материалов широко применяется их пропитка. Необходимо иметь в виду, что пропитка целлюлозных волокнистых материалов и других органических диэлектриков дает лишь замедление увлажнения материала, не влияя на величину после длительного воздействия влажности; это объясняется тем, что молекулы пропиточных веществ, имеющие весьма большие размеры по сравнению с размерами молекул воды, не в состоянии создать полную непроницаемость пор материала для влаги, а наиболее мелкие поры пропитываемого материала они вообще не могут проникнуть.

 

 

1.2 Тепловые свойства  диэлектриков

 

          Нагревостойкость

 

    • Способность электроизоляционных материалов и изделий без вреда для них как кратковременно, так и длительно выдерживать воздействие высокой температуры называют нагревостойкостью. Нагревостойкость неорганических диэлектриков определяют, как правило, по началу существенного изменения электрических свойств, например по заметному росту tg или снижению удельного электрического сопротивления. Нагревостойкость оценивают соответствующими значениями температуры (в С), при которой появились эти изменения. Нагревостойкость органических диэлектриков часто определяют по началу механических деформаций растяжения или изгиба, погружению иглы в материал под давлением при нагреве (определение "теплостойкости"). Однако и для них возможно определение нагревостойкости по электрическим характеристикам.
    • В качестве примера давно существующего способа оценки нагревостойкости электроизоляционных материалов можно отметить способ Мартенса. По этому способу нагревостойкость пластмасс
    • (Рис.слюдяная бумага)

Теплопроводимость.

 

    • Практическое значение теплопроводимости объясняется тем, что тепло, выделяющееся вследствие потерь мощности в окруженных электрической изоляции проводниках , а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы.
    • Теплопроводимость влияет на электрическую прочность при тепловом пробое и на стойкость материала к тепловым импульсам. Теплопроводность материалов характеризуют теплопроводностью , входящей в уравнение Фурье
    • где, P - мощность теплового потока сквозь площадку S, нормальную к потоку,
    • dT/dl - градиент температуры.
    • Тепловое расширение диэлектриков, как и других материалов, оценивают температурным коэффициентом линейного расширения (ТКЛР), измеряемым в К-1 :
    • Материалы, обладающие малыми значениями ТКЛР, имеют, как правило, наиболее высокую нагревостойкость и наоборот.
    • (Рис. чистый графен)

 

1.3 Химические свойства  диэлектриков

 

    • Знание химических свойств диэлектриков важно для оценки надежности их в эксплуатации и для разработки технологии.
    • При длительной работе диэлектрики не должны разрушаться с выделением побочных продуктов и не вызывать коррозии соприкасающимися с ними металлов; не реагировать с различными веществами (например, газами, водой, кислотами, щелочами, растворами солей и т.п.). Стойкость к действию всех этих веществ у различных диэлектриков весьма разнообразна.
    • Материалы в производстве деталей могут обрабатываться различными химико-технологическими: склеиваться, растворяться в растворителях с образованием лаков и т.д. Растворимость твердых материалов может быть оценена количеством материала, преходящим в раствор за единицу времени с единицы поверхности материала, соприкасающейся с растворителем. Кроме того, нередко оценивают растворимость по тому наибольшему количеству вещества, которое может быть растворено в данном растворе (т.е. по концентрации насыщенного раствора).

2. Пробой диэлектриков

 

    • Пробой - потеря электрической прочности под действием напряжённости электрического поля - может иметь место как в образцах различных диэлектриков и систем изоляции, так и в электроизоляционных системах любого электротехнического устройства - от мощных генераторов и высоковольтных трансформаторов до любого бытового прибора. Сочетание в системах изоляции материалов, разных по электрической прочности, может приводить к серьёзным осложнениям в эксплуатации самых разнообразных электротехнических устройств, особенно высокого напряжения, где изоляция работает в сильных электрических полях и может возникнуть её пробой.
    • Причины пробоя бывают различными; не существует по этому единой универсальной теории пробоя. В любой изоляции пробой приводит к образованию в ней канала повышенной проводимости, достаточно высокой, чтобы произошло короткое замыкание в данном электротехническом устройстве, создающее аварийную ситуацию, по существу выводящую это устройство из строя. Однако в этом отношении пробой может проявлять себя в разных системах изоляции по - разному. В твёрдой изоляции, как правило, канал пробоя сохраняет высокую проводимость после выключения, приведшего к пробою напряжения, явление протекает необратимо. В жидких и газообразных диэлектриках вследствие высокой подвижности их частиц электрическое сопротивление канала пробоя восстанавливается вызвавшего его напряжения практически мгновенно.
    • Определение диэлектрических потерь. Потери в постоянном и переменном электрическом полях
    • Диэлектрические потери, часть энергии переменного электрического поля в диэлектрической среде, которая переходит в тепло. При изменении значения и направления напряжённости Е электрического поля диэлектрическая поляризация также меняет величину и направление; за время одного периода переменного поля поляризация дважды устанавливается и дважды исчезает.

  
3. Диэлектрические потери полимеров 

 

    • Диэлектрические потери неполярных полимеров при тщательной очистке их от остатков мономеров, катализаторов, стабилизаторов невелики, поэтому они находят применение в качестве высокочастотных диэлектриков. В этом случае часто tgд =2•10-4. В полимерах, недостаточно хорошо очищенных от примесей, наряду с потерями сквозной проводимости, как и в полярных диэлектриках, возможны потери на дипольную поляризацию . Диэлектрические потери полярных полимеров определяются дипольной ориентационной и резонансной поляризациями. Время установления дипольной поляризации с ростом температуры изменяется на несколько порядков, поэтому в зависимости от строения макромолекул полимеров tgд от температуры и частоты изменяется сложным образом. В температурной зависимости tgд полярных полимеров может наблюдаться несколько максимумов tgд - б, в, г, д тогда, когда у полимера имеются полярные группы, обладающие различной подвижностью (дипольно-групповые потери). При температуре выше температуры стеклования Тс. у полимеров возможна ориентация крупных блоков макромолекулы - сегментов (дипольно-сегментальная поляризация).
    • Дипольно-сегментальная поляризация приводит к появлению "высокотемпературного" максимума . Этот вид поляризации может не наблюдаться у полимеров с очень жесткими макромолекулами. Характерная зависимость tgд от Т для полимерного диэлектрика с дипольно-групповыми (д, г, в) и дипольно-сегментальными потерями .
    • Диэлектрические потери неорганических диэлектриков
    • Обзор экспериментальных частотных и температурных зависимостей тангенса угла диэлектрических потерь в стеклах, керамике, ситаллах был проведен в монографии М.Д. Машкович, главным образом для диапазона СВЧ, что исключительно актуально.

  
Список используемых источников. 

 

    • 1 .Богородицкий Н.П., Пасынков В.В., Тареев Б.М. Электротехнические материалы. Л., «Энергия», 2010.
    • 2. Сканави Г.И., Физика диэлектриков (Область слабых полей), 2011;
    • 3.  Браун В., Диэлектрики,2009;
    • 4. Хиппель А.Р., Диэлектрики и их применение, 2011;
    • 5. Физический энциклопедический словарь, т. 1, М., 2010, с. 643.

Информация о работе Диэлектрические материалы