Автор работы: Пользователь скрыл имя, 10 Апреля 2013 в 16:59, реферат
В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался.
Принцип неопределённости Гейзенберга 3
Пищевые цепи и экологическая пирамида 9
Содержание
Принцип неопределённости Гейзенберга
Пищевые цепи и экологическая
пирамида
В первой четверти ХХ века именно
такова была реакция физиков, когда
они стали исследовать
Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).
В начале 1920-х годов, когда
произошел бурный всплеск творческой
мысли, приведший к созданию квантовой
механики, эту проблему первым осознал
молодой немецкий физик-теоретик Вернер
Гейзенберг. Начав со сложных математических
формул, описывающих мир на субатомном
уровне, он постепенно пришел к удивительной
по простоте формуле, дающий общее описание
эффекта воздействия
неопределенность значения координаты x неопределенность скорости > h/m,
математическое выражение которого называется соотношением неопределенностей Гейзенберга:
Δx х Δv > h/m
где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10–34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.
Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.
И тут мы подходим к самому
принципиальному отличию
В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.
На самом деле, принцип
неопределенности связывает не только
пространственные координаты и скорость
— на этом примере он просто проявляется
нагляднее всего; в равной мере неопределенность
связывает и другие пары взаимно
увязанных характеристик
Относительно принципа неопределенности нужно сделать еще два важных замечания:он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;
принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.
Иногда вам могут встретиться
утверждения, будто принцип неопределенности
подразумевает, что у квантовых
частиц отсутствуют определенные пространственные
координаты и скорости, или что
эти величины абсолютно непознаваемы.
Не верьте: как мы только что видели,
принцип неопределенности не мешает
нам с любой желаемой точностью
измерить каждую из этих величин. Он утверждает
лишь, что мы не в состоянии достоверно
узнать и то, и другое одновременно.
И, как и во многом другом, мы вынуждены
идти на компромисс. Опять же, писатели-антропософы
из числа сторонников концепции
«Новой эры» иногда утверждают, что, якобы,
поскольку измерения
Выводы. Изложенное меняет распространенное представление о соотношении неопределенности и связанных с ней парадоксах.
Влияние измерительного инструмента н одновременное его воздействие на результат измерения сопряженных параметров не является спецификой квантовой механики и рассматриваемого соотношения. Специфичным является феномен квантования “действия”.Соотношение неопределенности не отражает волновых свойств частиц .Специфическая неопределенность соответствует невозможности определения параметров отдельной частицы и не отражает вероятностный подход, относящийся к ансамблю частиц.
Специфическая неопределенность отдельно каждого из сопряженных параметров определяется методикой измерения.
Связь между точностями измерения сопряженных параметров имеет место не просто при одновременном измерении обоих параметров, а при едином измерении, соответствующим определению количества квантов действия с параллельной, зависящей от используемой методики измерения, оценкой их компонентов — сопряженных параметров. Моделью подобного измерения является индикатор, в котором имеются три шкалы, отградуированные не только в квантах действия, но и в измеряемых сопряженных параметрах.
Внутри экологической системы органические вещества создаются автотрофными организмами (например, растениями). Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называется пищевой цепью; каждое звено пищевой цепи называется трофическим уровнем (греч. trophos «питание»).
Организмы первого трофического уровня называются первичными продуцентами. На суше большую часть продуцентов составляют растения лесов и лугов; в воде это, в основном, зелёные водоросли. Кроме того, производить органические вещества могут синезелёные водоросли и некоторые бактерии.
Организмы второго трофического уровня называются первичными консументами, третьего трофического уровня – вторичными консументами и т. д. Первичные консументы – это травоядные животные (многие насекомые, птицы и звери на суше, моллюски и ракообразные в воде) и паразиты растений (например, паразитирующие грибы). Вторичные консументы – это плотоядные организмы: хищники либо паразиты. В типичных пищевых цепях хищники оказываются крупнее на каждом уровне, а паразиты – мельче.
Существует ещё одна группа организмов, называемых редуцентами. Это сапрофиты (обычно, бактерии и грибы), питающиеся органическими остатками мёртвых растений и животных (детритом). Детритом могут также питаться животные – детритофаги, ускоряя процесс разложения остатков. Детритофагов, в свою очередь, могут поедать хищники. В отличие от пастбищных пищевых цепей, начинающихся с первичных продуцентов (то есть с живого органического вещества), детритные пищевые цепи начинаются с детрита (то есть с мёртвой органики).
В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети.
Пищевые сети служат основой
для построения экологических пирамид.
Простейшими из них являются пирамиды
численности, которые отражают количество
организмов (отдельных особей) на каждом
трофическом уровне. Для удобства
анализа эти количества отображаются
прямоугольниками, длина которых
пропорциональна количеству организмов,
обитающих в изучаемой
В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы – более сложный и длительный процесс.