Автор работы: Пользователь скрыл имя, 27 Мая 2013 в 22:17, реферат
В КЛ под законом понимается класс гипотез, выведенных из теоретических допущений, математически сформулированных, взаимосвязанных с другими законами в этой области и в достаточном объёме и успешно проверенных на эмпирических данных, то есть таких, которые нельзя было опровергнуть несмотря на многочисленные попытки. Köhler пишет о законах КЛ: «Более того, можно показать, что эти свойства лингвистических элементов и отношений между ними подчиняются универсальным законам, которые могут быть сформулированы строго математически также как и законы естественных наук.
Введение
1. Проблематика квантитативной лингвистики с теоретической и прикладной точек зрения - 5 -
1.1. Некоторые языковые лингвистические
законы - 7 -
1.2. Стилистика - 9 -
2. Основные области приложения структурно-вероятностной модели языка - 10 -
2.1. Авторизация атрибуция текста - 12 -
2.2. Авторизация текста: пример экспертизы - 14 -
Заключение
Список использованной литературы
Компьютерное моделирования языка и речи. Другая важная область прикладного использования знаний о частоте использования тех или иных языковых структур — компьютерная лингвистика. Многие компьютерные программы, связанные с функционированием языка, используют алгоритмы, основывающиеся на данных о частоте употребления фонем, морфем, лексических единиц и синтаксических конструкций. Например, программы автоматической коррекции орфографии содержат словари, как правило, только наиболее частотных лексем. Редкие слова пользователь может вводить в свой индивидуальный словарь. Аналогичные словари используются в программах автоматического распознавания письменного текста и речи (типа Fine Reader). Абсолютная частота появления лексем (особенно терминологической лексики) используется в системах автоматического аннотирования и реферирования. Так, согласно статистико-дистрибутивному методу автоматического индексирования информативными для данного текста считаются скопления слов, расположенных достаточно близко друг от друга, частота которых превосходит некоторую пороговую величину, например, среднюю частоту слов в документе (метод ACSI-Matic).
Дешифровка кодированного
2.1Авторизация атрибуция текста.
Проблема авторизации текста относится к числу классических проблем филологического исследования. Часто она рассматривается в рамках «количественной стилистики» — стилеметрии. Авторизация включает как литературную, так и лингвистическую составляющую. В. В. Виноградов в книге «Проблема авторства и теория стилей» сформулировал типологию факторов атрибуции текста. К субъективным факторам он относит:
а) субъективно-коммерческие;
б) субъективно-конъюнктурные;
в) субъективно-эстетические;
г) субъективно-психологические;
д) субъективно-идеологические факторы.
Есть и объективные факторы:
а) документально-рукописные (археологические);
б) исторические (биографии, свидетельства современников);
в) историко-идеологические и сопоставительно-
г) историко-стилистические;
д) художественно-стилистические;
е) лингвостилистические. Однако чисто
филологическое направление авторизации
не позволяет построить
2.2Перспектива объективизации
Перспектива объективизации экспертного знания была обнаружена в использовании количественных, статистических методов анализа текста. Пионером в этой области стал Н. А. Морозов, перу которого принадлежит опубликованная в 1915 г. работа «Лингвистические спектры. Средство для отличия плагиатов от истинных произведений того или другого известного автора. Стилеметрический этюд». Существенно, что в квантитативном анализе Морозов предлагал опираться не на тематически связанную лексику слова, определяемые спецификой описываемого материала, его предметной и проблемной ориентацией, — а на служебные слова и слова тематически нейтральные. Дело в том, что именно особенности употребления служебных слов, лексем с общей семантикой, не привязанной к тематике художественного произведения, формируют авторский стиль и практически не поддаются имитации.
В настоящее время развитие методик авторизации текста наиболее продуктивно проходит в рамках стилеметрии. Лингвистические основания авторизации могут быть различны, но использование количественных методов анализа оказывается неизбежным. Одно из перспективных направлений в этой области — привлечение к авторизации текста теории распознавания образов. При таком подходе стиль описывается как пространство количественно выразимых параметров — средняя длина предложения, количество вложенных синтаксических структур, количество слов в предложении, количество предложений в абзаце и т.д. Далее каждый анализируемый текст выражается через вектор, координаты которого задаются значениями выбранных параметров. Сходство векторов определяет и сходство стилей.
Разрабатываются подходы, основанные на изучении количественных особенностей реализации синтаксических структур, а также на выявлении некоторых особенностей формальной структуры текста, связанных с выражением типов чужой и авторской речи. Соотношение чужой речи (прямой, смешанной, вложенной) с авторской также оказывается стилеобразующим фактором. Эта характеристика стиля отражена в «формально-пунктуационном» методе структуризации текста, который реализован в компьютерной системе DISSKOTE [Гринбаум 1996].
2.2Авторизация текста: пример экспертизы
Одна из наиболее распространенных
областей использования знаний о
статистических закономерностях языковых
явлений — экспертиза авторства
текста. Типологически можно
A. Множественная
Б. Сравнение по образцу. Имеется пример текста (текстов) некоторого автора X. Необходимо установить, является ли он и автором некоторого другого текста (текстов).
B. Конкуренция образцов. Имеются
образцы текстов авторов X,Y,Z.
Приводимая ниже экспертиза12) вписывается в рамки случая В. Речь шла о спорном авторстве. В качестве материала для исследования были получены тексты следующих произведений: «Следователь президента»; «Смоленская площадь»; «Безумные глаза»; «В погоне за невидимым убийцей»; «Незнакомец»; «Шакалы»; «Трудное решение».
Тексты были представлены в печатной и машиночитаемой форме (файлы в формате DOS TEXT). Выборочное сравнение файлов и страниц печатных текстов произведений показало, что они полностью совпадают с точностью до разметки гарнитуры и фафических вьщелений в файлах. При компьютерной обработке символы разметки не учитывались.
Исходная проблема экспертизы была сформулирована следующим образом. Автором произведений «Безумные глаза», «В погоне за невидимым убийцей», «Незнакомец» является Э. Плющихин, а произведений «Шакалы», «Трудное решение» — В. Непомнящий. Авторство произведений «Следователь президента», «Смоленская площадь» является предметом спора.
В процессе проведения экспертизы необходимо было подготовить ответ на следующие вопросы:
В исследовании по экспертизе использовалась методика количественного анализа квазисинонимичных лексем. Сущность методики заключается в выявлении авторских предпочтений в выборе из группы квазисинонимов — близких по значению слов или устойчивых словосочетаний (фразеологизмов). В литературоведении и структурной поэтике близкие методы привлекаются для характеристики стиля писателя и особенностей его видения мира. Интересную информацию об идиолекте писателя дает изучение частотных характеристик служебных и модальных слов. Так, частицы разве и неужели по-разному распределены в романах М. Булгакова «Мастер и Маргарита» и «Белая гвардия»: разве значительно чаще встречается в «Мастере и Маргарите», а неужели — наоборот. Значение частицы разве предполагает более активную, действенную позицию говорящего, подвергающего сомнению некоторое положение дел. В противоположность разве частица неужели скорее указывает на то, что некоторое положение дел практически принимается говорящим и он лишь недоумевает, удивляется, почему оно имеет место. Учитывая значение этих частиц, указанные факты распределения разве и неужели можно интерпретировать как лингвистический коррелят авторской позиции в изображении событий и действий героев: нечто вроде пассивного «изумления», «удивления» автора в «Белой гвардии» и при активном восприятии реальности в «Мастере и Маргарите».
Такие «всплески» распределения частот
служебных и модальных слов характеризуют
не только отдельные тексты художественной
прозы, но и оказываются
В художественных текстах Достоевского мы встречаемся с совершенно иной ситуацией: на одно употребление по меньшей мере приходится 342,5 употреблений по крайней мере (по крайней мере — 685 вхождений по 35 художественным текстам, по меньшей мере — 2 вхождения по 35 художественным текстам). Всего употреблений по меньшей мере три, но одно из них приходится на контекст, более подходящий для по крайней мере
В противоположность по меньшей мере, по крайней мере с несомненностью относится к словам Достоевского. Конкордансы на это словосочетание занимают более двухсот страниц текста.
Можно было бы подумать, что в русском языке времен Достоевского распределение между по крайней мере и по меньшей мере было именно таким: частота по крайней мере существенно превосходила частоту по меньшей мере. Однако это не так. Предварительный анализ корпуса текстов Гоголя (около трех мегабайт) показывает, что различие в частотности этих единиц не так велико, как у Достоевского: на 1 употребление по меньшей мере — 83 употребления по крайней мере. Весьма вероятно, что в сфере публицистики того времени различие в частоте употребления по меньшей мере и по крайней мере было еще меньшим и приближалось к современной норме. Здесь тоже можно видеть коррелят авторского видения мира, авторского стиля.
По полученным файлам произведений Э. Плющихина, В. Непомнящего и спорных произведений (для каждого текста в отдельности и потрем группам — «спорная группа», «группа произведений Плющихина», «группа произведений Непомнящего») были составлены словники с указанием абсолютной и относительной частоты употребления (общее количество словоупотреблений по произведениям и по группам см. в приложении к экспертизе). Для компьютерной обработки использовалась программа DIALEX и база данных ACCESS 7 в среде Windows.
Из сферы анализа были исключены
слова с предметным значением, частота
употребления которых определяется
конкретной проблемной областью. Были
проанализированы группы квазисинонимов
для следующих слоев
Рассмотрим последовательно
Таблица 1
Спорные произведения |
Произведения Плющихина |
Произведения Непомнящего | ||||
Абсолют. частота |
Относит. частота |
Абсолют. частота |
Относит. частота |
Абсолют. частота |
Относит. частота | |
Едва Немного |
6+716)=13 2+1=3 |
0,007 % 0,002 % |
12+3+12=27 1+2+2=5 |
0,006% 0,002 % |
11+18=29 25+25=50 |
0,018% 0,031 % |