Автор работы: Пользователь скрыл имя, 04 Апреля 2014 в 23:46, реферат
Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.
Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминии, медь, свинец, олово, магний, цинк, титан.
Введение
Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.
Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминии, медь, свинец, олово, магний, цинк, титан.
1. Алюминий и его сплавы
Алюминий — металл серебристо-белого циста, характеризуется низкой плотностью 2,7 г/см3, высокой электропроводностью, температура плавления 660"С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.
Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Си, Mg, Si, Zn). Железо и кремний являются постоянными примесями алюминия. Железо вызывает
снижение пластичности и электропроводности алюминия. Кремний, как и медь, магний, цинк, марганец, ипколь и хром, относится к легирующим добавкам, упрочняющим алюминий.
В зависимости от содержания постоянных примесей различают:
--- алюминий особой чистоты марки А 999 (0,001 % примесей);
— алюминий высокой чистоты — А 935, А 99, А 97, Л 95 (0,005-0,5 % примесей);
---- технический алюминий — А 85, А 8, А 7, А 5, А О (0,15—0,5 % примесей).
Алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления токопроводящих и кабельных изделий.
И автомобилестроении широкое применение получили сшиты на основе алюминия. Они классифицируются: - по технологии изготовления; по степени упрочнения после термической обработки;
---- по эксплуатационным свойствам.
Деформируемые сплавы
К. неупрочияемым термической обработкой относятся сплавы;
алюминия с марганцем марки АМц;
алюминия с магнием, марок АМц АМгЗ, АМг5В;
АМгЗП, АМгб.
Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.
В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:
— нормальной прочности;
— высокопрочные сплавы;
— жаропрочные сплавы;
— сплавы для ковки и штамповки.
Сплавы нормальной прочности. К ним относятся сплавы системы Алюминий + Медь + Магний (дюралимины), которые маркируются буквой «Д». Дюралюмины (Д1, Д16, Д!8) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.
Дюралимины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 — несущие элементы фюзеляжей самолетов, сплав Д18 — один из основных заклепочных материалов.
Высокопрочные сплавы алюминия {В93, В95, В96) откосятся к системе Алюминий + Цинк + Магний + •г Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств сплавы закаливают с последующим старением.
Высокопрочные сплавы по своим прочностным показателям превосходят дуралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении — детали каркасов, шасси и обшивки.
Жаропрочные сплавы алюминия (АК 4—1, Д 20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.
Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300°С.
Сплавы для ковки и штамповки (АК 25 АК 4Э АК 6, АК 8) относятся к системе Алюминий + Медь + Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средне нагруженных деталей сложной формы (АК 6) и высоконагруженных штампованных деталей — поршни, лопасти винтов, крыльчатки насосов и др.
Литейные сплавы. Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.
Применяют следующие виды термической обработки литейных алюминиевых сплавов:
— искусственное старение: для улучшения прочности и обработки резанием;
— отжиг с охлаждением на воздухе: для снятия литейных и остаточных напряжений и повышения пластичности;
— закалка и естественное (или искусственное) старение: для повышения прочности;
— закалка и смягчающий отпуск: для повышения пластичности и стабильности размеров.
Сплавы алюминия с кремнием (силумины) получили наибольшее распространение среди алюминиевых литейных сплавов в силу своих высоких литейных свойств и хороших механических и технологических характеристик. Силумины (марок АЛ2, АЛ4, АЛ9) обладают высокой жидкотекучестью, хорошей герметичностью, достаточной прочностью, хорошо обрабатываются резанием, хорошо свариваются, сопротивляются коррозии и устойчивы к образованию горячих трещин.
Сплав АЛ2 применяется для изготовления тонкостенных деталей сложной формы при литье в землю: корпуса агрегатов и приборов.
Сплав АЛ4 — высоконагруженные детали ответственного назначения: корпуса компрессоров, блоки двигателей, поршни цилиндров и др.
Сплав АЛ9 — изготовление деталей средней нагруженно, но сложной конфигурации, а также для деталей, подвергающихся сварке.
Сплавы алюминия с магнием (магналины) — АЛ 8, АЛ13, АЛ27, АЛ29 обладают наиболее высокой коррозионной стойкостью и более высокими механическими свойствами после термической обработки по сравнению с другими алюминиевыми сплавами, но литейные свойства их низкие.
Сплавы АЛ 8 и АЛ 13 являются наиболее распространенными, из них изготовляют подверженные коррозионным воздействиям детали морских судов, а также детали, работающие при высоких температурах (головки цилиндров мощных двигателей воздушного
Ставы алюминия с медью — АЛ7, АЛ12, АЛ19 обладают невысокими литейными свойствами и пониженной коррозионной стойкостью, но высокими механическими свойствами.
Сплав АЛ7 применяют для изготовления отливок несложной формы, работающих-с большими напряжениями (головки цилиндров маломощных двигателей воздушного охлаждения).
Сплавы алюминия, меди и кремния — АЛЗ, АЛ4, АЛб характеризуются хорошими литейными свойствами, но коррозионная стойкость их невысокая.
Сплав АЛЗ широко применяют для изготовления отливок корпусов, арматуры и мелких деталей.
Сплав АЛ4 используется для отливок ответственных деталей, требующих повышенной теплоустойчивости и твердости.
Сплав АЛ6 применяют для отливок корпусов карбюраторов и арматуры бензиновых двигателей.
Сплавы алюминия, цинка и кремния — типичный представитель сплав АЛИ (цинковый силумин), обладающий высокими литейными свойствами, а для повышения механических свойств подвергающийся модифицированию. Используется для изготовления отливок сложной формы — картеров, блоков двигателей внутреннего сгорания.
Подшипниковые сплавы. Наибольшее применение из алюминиевых подшипниковых материалов получил сплав АСМ. По антифрикционным свойствам он близок к свинцовой бронзе, но превосходит ее по коррозионной стойкости и технологичности.
Сплав АСС-6-5 содержит в своем составе 5 % свинца, что придает ему высокие противозадирные свойства. Подшипники скольжения из сплавов АСМ и АСС-6-5 применяют взамен бронзовых в дизельных двигателях.
Из алюминиевых сплавов, легированных оловом, изготовляют тяжелонагруженные подшипники скольжения в автомобилестроении, а также в судовом и общем машиностроении.
Алюминиевые сплавы характеризуются более высоким коэффициентом теплового расширения, чем чугуны и стали. Поэтому подшипники из алюминиевых сплавов ограниченно применяются в практике машиностроения. Более широкое распространение получили биметаллические материалы, представляющие собой слой алюминиевого сплава, нанесенный на стальное основание. Такие биметаллы обеспечивают надежную работу узлов трения при больших нагрузках (20— 30 МПа) и высоких скоростях скольжения (до 20 м/с).
Спеченные металлы. Материалы на основе алюминия, полученные методами порошковой металлургии, обладают по сравнению с литейными сплавами более высокой прочностью, стабильностью свойств при повышенных температурах и коррозионной стойкостью.
Материалы из спеченных алюминиевых порошков (САП) состоят из мельчайших частичек алюминия и его оксида А12О3. Порошок для спекания получают из технически чистого алюминия, распылением с последующим измельчением гранул в шаровых мельницах.
Технологический процесс получения изделий из САП состоит из операций изготовления заготовок и последующей механической обработки. Заготовки получают брикетированием (холодным или с подогревом) порошка с последующим спеканием при 590-620°С и давлениях 260-400 МПа.
По стойкости к воздействию температуры материалы из САП превосходят жаропрочный алюминиевый сплав ВД17.
Спеченные алюминиевые порошки (марок САП-1 — САП-4) применяют для изготовления деталей повышенной прочности и коррозионной стойкости, эксплуатируемых при рабочих температурах до 500°С.
Спеченные -алюминиевые сплавы (САС) получают из порошков алюминия с небольшим содержанием А12О3, легированных железом, никелем, хромом, марганцем, медью и другими элементами.
Представителем этой группы материалов является САС-1, содержащей 25—30 % Si и 7 % Ni, применяемый взамен более тяжелых материалов в приборо- и машиностроении.
2. Медь и ее сплавы
Медь в чистом виде имеет красный цвет;.чем больше в ней примесей, тем грубее и темнее излом. Температура плавления меди 1083°С, плотность 8,92 г/см3.
Выпускают медь следующих марок: - катодная — МВ4к, МООк, МОку, М1к;
— бескислородная — МООб, МОб, М1б;
— катодная переплавленная — М1у;
— раскисленная — М1р, М2р, МЗр, МЗ. .
Примеси оказывают существенное влияние на физико-механические характеристики меди. По содержанию примесей различают марки меди:
МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), МЗ (99,50 % Си).
Главными достоинствами меди как машиностроительного материала являются высокие тепло- и электропроводность, пластичность, коррозионная стойкость в сочетании с достаточно высокими механическими свойствами. К недостаткам меди относят низкие литейные свойства и плохую обрабатываемость резанием.
Легирование меди осуществляется с целью придания сплаву требуемых механических, технологических, антифрикционных и других свойств. Химические элементы, используемые при легировании, обозначают в марках медных сплавов следующими индексами:
А — алюминий; Внм — вольфрам; Ви — висмут; В — ванадий; Гм — кадмий; Гл — галлий; Г — германий; Ж -железо; Зл — золото; К — кобальт; Кр — кремний; Мг — магний; Мц — марганец; М — медь; Мш — мышьяк; Н — никель; О — олово; С — свинец; Ст — селен; Ср — серебро; Су — сурьма; Ти — титан; Ф — фосфор; Ц — цикк.
Медные сплавы классифицируют:
по химическому составу на:
— латуни;
— бронзы;
— медноникелевые сплавы; по технологическому назначению на:
— деформируемые;
— литейные;
по изменению прочности после термической обработки ъ&'.
— упрочняемые;
— неупрочняемые.
Латуни — сплавы меди, в которых главным легирующим элементом является цинк. В зависимости от содержания легирующих компонентов различают:
— простыв (двойные) латуни;
— многокомпонентные (легированные) латуни. Простые латуни маркируют буквой «Л» и цифрами,
показывающими среднее содержание меди в сплаве. Например, сплав Л 90 — латунь, содержащая 90 % меди, остальное — цинк.
В марках легированных латуией группы букв и цифр, стоящих после- них, обозначают легирующие элементы и их содержание в процентах. Например, сплав ЛАН КМц 75—2—2,5—0,5—0,5 — латунь алюминиевоникель-
кремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное — цинк.
В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.