Автор работы: Пользователь скрыл имя, 06 Мая 2014 в 14:24, реферат
Медь в латинском языке — Cuprum. Это один из известнейших химических элементов, этот металл известен с глубокой древности.
По данным археологической науки медь была хорошо известна египтянам уже за 4000 лет до нашей эры. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой - сравнительной легкостью получения ее из соединений.
Введение.................................................................................................................................3
История меди..........................................................................................................................3
Распространение меди в природе. Месторождения...........................................................5
Физические и химические свойства меди...........................................................................6
Цвет меди и её соединений...................................................................................................7
Электропроводимость...........................................................................................................7
Химические свойства............................................................................................................8
Оксид меди.............................................................................................................................9
Гидроксиды меди.................................................................................................................10
Сульфаты...............................................................................................................................10
Карбонаты.............................................................................................................................11
Комплексообразование........................................................................................................11
Сплавы...................................................................................................................................11
Латуни....................................................................................................................................11
Бронзы....................................................................................................................................11
Медноникелевые сплавы......................................................................................................12
Медь и живые организмы, применение меди.....................................................................14
Заключение.............................................................................................................................14
Список литературных источников:......................................................................................15
Планомерные поиски месторождений меди начинаются при Иване III, Иване Грозном и особенно при Петре I. При Иване Грозном в Олонецкий уезд был послан новгородский гость (купец) Семен Гаврилов “для сыску медные руды”, где она и была найдена. В 1652 г. Казанский воевода сообщил царю: “Медные руды. Сыскано много и заводы к медному делу заводим”. [2, с.26] Из документов следует, что с 1562 по 1664 г. было послано из “Казани к Москве чистыя меди 4641 пуд. 6 гривенков”. В 1702 г. стала выходить первая русская газета “Ведомости”,которую, очевидно, редактировал Петр I. 2 января 1703 г. в ней писали: “Из Казани пишут. На реке Соку нашли много нефти и медной руды, из той руды меди выплавили изрядно, отчего чают не малую прибыль Московскому государству”.
В начале этого столетия главнейшими месторождениями, которые разрабатывались, были: в районе Северного Урала – Богословский завод, в районе Нижнего Тагила– Выйский завод, а на Кавказе – Калакентский и Кедабекский заводы.
В наше время известны месторождения меди на восточном склоне Урала, Средней Азии, Закавказье и т.д.
Большое количество меди и других ископаемых находится на дне океанов, которое покрыто так называемыми конкрециями – скоплениями в виде камней округлой неправильной формы. Они содержат в среднем 0,5% меди. По подсчетам ученых запасы этой ценной и своеобразной руды составляют 5 млрд. тонн.
Физические и химические свойства меди.
Физические свойства
Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.
Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью иотсутствием “зазоров” между ион-атомами. Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов),между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгонялипри высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек – “усов”. Как оказалось такая медь в стораз прочнее, чем обычная.
Цвет меди и её соединений.
Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.
При повышении валентности понижается окраска меди, например CuCl – белый, Cu2O – красный, CuCl + H2O – голубой, CuO – черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.
Электропроводимость.
Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её применение в электронике.
Медь кристаллизируется по типу централизованного куба (рис 1).
Рисунок 1. Кристаллическая решетка меди.
Характеристики основных физико-механических свойств меди.
Плотность r , кг/м3 |
8890 |
Температура плавления Тпл, ° С |
1083 |
Скрытая теплота плавления D Нпл, Дж/г |
208 |
Теплопроводность l , Вт/ (м × град), при 20–100 ° С |
390 |
Удельная теплоемкость Ср, Дж/ (г × К), при 20–100 ° С |
0,375 |
Коэффициент линейного расширения a × 10–6, град–1, при 0–100 ° С |
16,8 |
Удельное электросопротивление r × 108, Ом × м, при 20–100 ° С |
1,724 |
Температурный коэффициент электросопротивления, град–1, при 20–100 ° С |
4,3× 10–3 |
Предел прочности s в, МПа | |
мягкой меди (в отожженном состоянии) |
190-215 |
твердой меди (в нагартованном состоянии) |
280-360 |
Относительное удлинение d , % | |
мягкой меди (в отожженном состоянии) |
60 |
твердой меди (в нагартованном состоянии) |
6 |
Твердость по Бринеллю НВ, МПа | |
мягкой меди (в отожженном состоянии) |
45 |
твердой меди (в нагартованном состоянии) |
110 |
Предел текучести s t , МПа | |
мягкой меди (в отожженном состоянии) |
60-75 |
твердой меди (в нагартованном состоянии) |
280-340 |
Ударная вязкость KCU, Дж/см2 |
630-470 |
Модуль сдвига G × 10–3, МПа |
42-46 |
Модуль упругости Е × 10–3, МПа | |
мягкой меди (в отожженном состоянии) |
117-126 |
твердой меди (в нагартованном состоянии) |
122-135 |
Температура рекристаллизации, ° С |
180-300 |
Температура горячей деформации, ° С |
1050-750 |
Температура литья, ° С |
1150-1250 |
Линейная усадка, % |
2,1 |
Химические свойства.
Рисунок 2. Схема строения атома меди.
29Cu 1s1 2s2 sp6 3s2 3p6 3d10 4s1
Eионизации 1 = 7.72 эВ
Eионизации 2 = 20.29 эВ
Eионизации 3 = 36.83 эВ
Отношение к кислороду .
Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:
В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:
Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь,розового цвета. К тому же слой оксида настолько тонок, что пропускает свет,т.е. просвечивает. По-иному медь окисляется при нагревании, например при 600-800 0C. В первые секунды окисление идет до оксида меди (I),которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.
Qобразования (Cu2O) = 84935 кДж.
Рисунок 3. Строение оксидной пленки меди.
Взаимодействие с водой.
Металлы подгруппы меди стоят
в конце электрохимического ряда напряжений,
после иона водорода. Следовательно,
эти металлы не могут вытеснять водород
из воды. В то же время водород и другие
металлы могут вытеснять металлы подгруппы
меди из растворов их солей, например:
Эта реакция окислительно-
электронов:
Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.
Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:
Взаимодействие с кислотами.
Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием
соответствующих солей:
.
Отношение к галогенам и некоторым другим неметаллам.
Qобразования (CuCl) = 134300 кДж
Qобразования (CuCl2) = 111700 кДж
Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул,а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.
Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:
. Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.
Оксид меди.
При прокаливании меди на воздухе она покрывается черным налетом, состоящим из
оксида меди . Его
также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)
2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.Под слоем меди расположен окисел розового цвета – закись меди Cu2O.
Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков:
.
Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте:
.
Пластинку промывают, высушивают и прокаливают при невысокой температуре – и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди – отрицательный,то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды – к
отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель.
Гидроксиды меди.
Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии
щелочи на раствор соли: .Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:
Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: .
Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .
Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .
Таким образом, гидроксид меди (II) может диссоциировать и как основание: и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных
групп воды:
Сульфаты.
Наибольшее практическое значение имеет CuSO4*5H2O,
называемый медным купоросом. Его готовят растворением меди в концентрированной
серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется:
.
Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.
Карбонаты
Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.
Комплексообразование
Характерное свойство двухзарядных ионов меди – их способность соединятся с молекулами аммиака с образованием комплексных ионов.
Сплавы
Латуни
Латуни — это двойные и многокомпонентные медные сплавы, в которых основной легирующий компонент — цинк (содержание не превышает 45 %). Среди медных сплавов латуни получили наибольшее распространение в промышленности благодаря сочетанию высоких механических и технологических свойств. По сравнению с медью латуни обладают более высокой прочностью, коррозионной стойкостью,лучшими литейными свойствами, имеют более высокую температуру рекристаллизации. Латуни — наиболее дешевые медные сплавы.