Автор работы: Пользователь скрыл имя, 24 Октября 2012 в 18:40, реферат
Под литьем в приборостроении понимают процесс, заключающийся в получении изделия путем помещения материала, находящегося в жидком агрегатном состоянии, в полость формы, затвердевание материала в полости формы и его последующего извлечения. Основным материальным элементом технологической системы литейного производства является форма.
1. Общие сведения о процессе литья 3
2. Классификация способов литья 4
3. Физическая сущность процесса литья 5
4.Виды литья:
4.1. В песчаные формы 7
4.2. В кокиль 10
4.3. В оболочковые формы 12
4.4. Шликерное в гипсовой форме 14
4.5. Центробежное литьё 16
4.6. Намораживанием 18
4.7. Под низким давлением 19
4.8. Под давлением 22
4.9. По выплавляемым моделям 23
4.10. Экструзия 25
5. Список литературы
v Преимущества.
Ø Повышенная точность геометрических размеров (по сравнению с литьем в ПФ).
Ø Снижение шероховатости поверхностей отливок (по сравнению с литьем в ПФ).
Ø Снижение припусков на механическую обработку на 10-20%.
Ø Лучше санитарно-гигиенические условия.
Ø Мелкозернистая структура отливок( > прочность).
v Недостатки.
Ø Сложность изготовления кокилей, их ограниченный срок службы (особенно при литье черных сплавов).
Ø Неподатливость кокиля и металлических стержней.
Ø Затруднен вывод газов из полости формы.
Ø Высокая стоимость кокиля, сложность и трудоемкость его изготовления
Ø Ограниченная стойкость кокиля, измеряемая числом годных отливок, которые можно получить в данном кокиле. От стойкости кокиля зависит экономическая эффективность процесса.
Ø Сложность получения отливок с поднутрениями, для выполнения которых необходимо усложнять конструкцию формы - делать дополнительные разъемы, использовать вставки, разъемные металлические или песчаные стержни.
Ø Неподатливый кокиль приводит к появлению в отливках напряжений, а иногда к трещинам.
Литье в оболочковые формы
v Сущность процесса заключается в применении тонкостенных разъемных разовые формы, изготовленных из формовочной смеси. Формовочные смеси изготавливают из мелкозернистого кварцевого песка, перемешанного с термореактивной смолой. Модельную плиту нагревают до температуры 200-250 градусов. На ее поверхность наносят разделительную смазку. Формовочную смесь наносят на на модельную плиту и выдерживают 10-30 секунд; от теплоты модельной плиты термореактивная смола переходит в жидкое состояние, склеивая песчинки с образованием песчано-смоляной оболочковой формы (толщиной 5-10 мм) в зависимости от времени выдержки. При этом смола твердеет. Готовые оболочковые формы снимают с металлической модели и, если они разъемные, то их склеивают. В собранные оболочковые формы заливают металл. Литьем в оболочковые формы получают ребристые цилиндры, коленчатые валы и т.д. Способ применяют для стальных, и для алюминиевых отливок, простой конфигурации без внутренних полостей в серийном производстве. Формовочная смесь состоит из мелкозернистого песка (размер зерна 0,25...0,06мм) и термореактивной смолы - пульвербакелита. Способ обеспечивает получение шероховатости поверхности Rz =80...40 мкм, и точность - 12...14 квалитет. Способ легко можно механизировать и автоматизировать.
v Преимущества способа.
Ø Расход формовочной смеси в 8-10 раз меньше, чем при литье в песчаные формы.
Ø Припуски составляют 0.5-1.5 мм.
v Виды.
Ø Бункерный.
Ø Прессования через резиновую диафрагму.
Ø Пескодувный.
v Технология изготовления оболочковой формы начинается с нанесения пульверизатором на металлическую модельную плиту разделительного состава, облегчающего снятие оболочки. Затем модельную плиту нагревают в электрической печи до температуры 200...220 °С, устанавливают над бункером и закрепляют моделью вниз. Бункер переворачивают на 180°, и формовочная смесь падает на нагретую модельную
Схема изготовления оболочковых форм:
Модельная плита с оболочковой полуформой и собранная форма:
плиту при выдержке в течение 20...30 с смола плавится и, обволакивая тонкой пленкой мелкие зерна песка, образует оболочку толщиной б...8 мм. Бункер возвращают в исходное положение, и непрореагировавшая формовочная смесь падает на его дно. Снятую с бункера модельную плиту с непрочной оболочкой отправляют в электрическую печь с температурой около 350 °С. Здесь смола в течение 90...180 с полимеризуется и необратимо твердеет, образуя прочную оболочковую полуформу. По такой же технологии изготавливают другую полуформу.
Для снятия готовой оболочковой полуформы модельная плита 1 с закрепленной полумоделью 3снабжена толкателями 4, находящимися на уровне плиты, и толкателями 2, которые выступают из нее и образуют в полуформе углубления. На другой модельной плите (здесь не показано) толкатели расположены на несколько миллиметров ниже плоскости разъема, чтобы образовать выступы на второй полуформе против углублений на первой. С помощью этих выступов и углублений фиксируют положение полуформ при сборке оболочковой формы. При нажатии на плиту 6 толкатели снимают полуформу 5 с модельной плиты. В одной из полуформ на стержневые знаки устанавливают стержень, закрывают другой полуформой, скрепляют их скобами, струбцинами или склеивают по плоскости разъема. Собранную оболочковую форму 7 помещают в. металлический ящик 8, засыпают крупным песком или чугунной дробью 9 и заливают металлом. К моменту полной кристаллизации металла отливки смола из смеси выгорает, форма и стержни разупрочняются и легко разрушаются, освобождая отливку при выбивке.
Шликерное литье в гипсовой форме
Шликерное литье представляет собой формообразование находящегося в жидкой фазе парафиново-воскового шликера на основе керамического порошка. Формообразование заготовок производится в пресс-формах. Рассмотрим два примера пресс-форм для шликерного литья.
Конструкция пресс-формы для литья
трубчатых заготовок, в том числе
пьезокерамических элементов (ПЭ) (рис.
5) должна обеспечивать наряду с точным
формообразованием также
Шликерное литье сферических ПЭ производится с использованием пресс-формы многоместной конструкции (рис. 6), имеющей горизонтальную плоскость разъема. Полости под отливки образованы сочетанием поверхностей точных углублений в матрице 1 и стержней 2.
Оборудованием для реализации операции шликерного литья является литьевая машина (рис. 7).
Каркас 1 литьевой машины изготовлен из уголковой стали и обшит стальным листом толщиной 1,5 мм. К каркасу крепится стальная плита 9, на которой осуществляется монтаж основных сборочных единиц: шликерного бака 2, механизма прижима пресс-формы 6, ограждение 7, электромагнитного клапана 4, контактного термометра 3, механической мешалки 5 с электродвигателем, блока электрического управления (на рис. 7 он не показан).
Шликерный бак состоит из собственно бака загрузки шликера, питателя 12, кожуха и крышки со встроенной в неё мешалкой. В крышке бака имеется отверстие под питатель. Для дополнительного подогрева шликера на выходе трубчатого питателя установлен дополнительный нагреватель 11 из нихромовой проволоки.
Шликерный бак устанавливается
в прорези плиты крышки и уплотняется
с помощью вакуумной резины тремя
эксцентриковыми зажимами. Для обеспечения
равномерного подогрева шликера
пространство между шликерным баком
и кожухом заполняется
Механизм прижима пресс-формы состоит из двух вертикальных стоек, на которых установлена подъемная плита 8 прижима. Ограждение, представляющее собой щиток из оргстекла, служит для предохранения оператора от ожогов горячей массой в случае её разбрызгивания.
Блок электрического управления смонтирован
на шасси и служит для регулирования
подачи сжатого воздуха через
электромагнитный клапан, для поддержания
определенной температуры шликера
с помощью системы
Для вакуумирования шликерный бак
с расплавленным шликером соединяется
с вакуумным насосом. В течение
1,5...2 ч из бака откачивают воздух, одновременно
работает механическая мешалка. По окончании
вакуумирования вакуумный шланг
перекрывают, а рабочий цикл начинается
с того, что открывают доступ сжатого
воздуха через электромагнитный
клапан в шликерный бак и в
полость мембранной пневмокамеры механизма
прижима пресс-формы. Сжатый воздух,
поступающий в полость
Центробежное литье
Центробежное литьё, способ литья
в быстро вращающуюся металлическую
форму. Расплавленный металл под
действием центробежных сил отбрасывается
к стенкам формы и
Внешняя поверхность отливки
Литье намораживанием
v Сущность процесса заключатся в том, что жидкий металл из разливочного ковша через металлопровод 1 и соединительный стакан 2 подают в водоохлаждаемый кристаллизатор 3. Образовавшуюся трубную отливку 5 циклически извлекают вверх при помощи подвижной части кристаллизатора 4. Отличительной особенностью этой схемы является сифонный подвод металла к кристаллизатору, отсутствие стержня и извлечение отливок вверх.
v Область применения
Ø Получение сплошных и полых цилиндрических заготовок из серого чугуна, чугуна с шаровидным графитом и белого высокохромистого.
Литье под низким давлением
v Сущность процесса заключается в заливке расплавленного металла в камеру сжатия машины и последующем выталкивании его через литниковую систему в полость металлической формы, которая заполняется под давлением. Заполнение полости происходит при высокой скорости впуска металла, которая обеспечивает высокую кинетическую энергию, поступающего в форму металла.
Скорость выпуска при литье
под давлением в зависимости
от типа отливки и сплава может
быть в пределах от 0,5 до 120 м/с. Различают
три способа литья под
v Виды.
Ø Литье с низкими скоростями впуска (0,5-2,5 м/с), обеспечивающее заполнение формы сплошным ламинарным потоком. Применяют этот способ для изготовления толстостенных отливок из алюминиевых сплавов и латуней.
Ø Литье со средними скоростями впуска (2-15 м/с), обеспечивающее турбулентное движение расплавленного металла, при котором в результате срыв струй захватываются в поток металла пузырьки воздуха, оттесняемые затвердевающим сплавом к середине отливки. Это создает воздушную пористость, которую удалить почти невозможно, но можно уменьшить под действием высокого давления. Изготовляют при этом отливки средней сложности.
Ø Литье с высокими скоростями впуска (более 30 м/с), обеспечивает заполнение только в режиме турбулентного течения истока расплава, но и со значительным его распылением, результатом которого является еще больший объем захваченного в полость отливки воздуха, для уменьшения воздушной пористости и в этом случае создают высокое давление [до 500МПа(н/мм2)] Этот способ применяют для тонкостенных отливок сложной конфигурации.
v Требования к литейным сплавам для литья под давлением.
Ø Достаточная прочность при высоких температурах, чтобы отливка не ломалась при выталкивании.
Ø Минимальная усадка.
Ø Высокая жидкотекучесть при небольшом перегреве.
Ø Небольшой интервал кристаллизации.
Этим требованиям
v При литье под давлением получают высокое качество отливок. Достижимая точность: 9-11 квалитет по размерам, получаемым в одной части литейной формы и 11-12 квалитет по размерам, получаемым в двух частях формы. Точность зависит от точности изготовления формы, обычно форму изготовляют на 1-2 квалитета точнее детали. Выше указана экономически достижимая в производстве точность.
v Шероховатость поверхности отливки зависит от шероховатости поверхности рабочей поверхности формы, продолжительности ее эксплуатации и материала отливки. Обычно рабочую поверхность формы полируют (при этом достигают параметр Ra=0,16 мкм). При литье до 500 отливок получают шероховатость поверхности Ra=1,25-0,63 мкм - для отливок из цинковых сплавов. Ra =2,5-1,25 мкм - для отливок из алюминиевых сплавов и Ra =2,5- Rz мкм - для медных сплавов, а при изготовлении 10000 отливок соответственно получают Ra =2,5-1,25 мкм, Ra =2.5 - Rz =20 мкм, Rz = 160-80 мкм.