Контрольная работа по материаловедению

Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 19:56, курсовая работа

Описание работы

Материаловедением называют прикладную науку о связи состава, строения и свойств материалов. Решение важнейших технических проблем, связанных с экономией материалов, уменьшением массы машин и приборов, повышением точности, надежности и работоспособности механизмов и приборов во многом зависит от развития материаловедения.
Теоретической основой материаловедения являются соответствующие разделы физики и химии, однако наука о материалах в основном развивается экспериментальным путем.
Напряжение – величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца.

Содержание работы

1 Опишите систему понятий, входящих в понятие «марка материала».
2. Сформулируйте принципы обозначения стандартных марок сталей.
3. Дайте расшифровку стандартных марок сталей.
4. Что необходимо понимать под термином «качество стали»?
5. Приведите основные характеристики механических свойств стали, по которым оцениваются стали конкретного назначения
6. Как и для чего нужно управлять количеством и качеством не металлических включений?
7. На какие свойства стали разного назначения влияет величина зерна?
8. Как управлять величиной зерна?
9. Что подразумевается под оптимальной структурой?
10. Опишите процесс закалки стали.
11. Как управлять типом структуры, образующейся при закалке.
12. Опишите понятия «закаливаемость» и «прокаливаемость».
13. Что такое «полоса прокаливаемости»?.
14. Что такое стали пониженной прокаливаемости?
15. Опишите процесс старения стали.
16. Перечислите требования к автомобильному листу.
17. Как понимать термин хорошая «свариваемость стали»?
18. От чего зависит контактная прочность стали?
19. Назовите уровни прочности канатной стали и опишите технологию упрочнения.
20. Назовите виды коррозионных повреждений нержавеющей стали.
Выбор и материаловедческое обоснование технологий формирования свойств.
21. Влияние холодной пластической деформации и последующего нагрева на структуру и свойства металла.
Список литературы

Файлы: 1 файл

Материаловедение.doc

— 825.50 Кб (Скачать файл)

Кислород, азот и водород  – вредные скрытые примеси. Их влияние наиболее сильно проявляется  в снижении пластичности и повышении  склонности стали к хрупкому разрушению. Кислород и азот растворяются в феррите в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами). Кислородные включения вызывают красно- и хладноломкость, снижают прочность. Повышенное содержание азота вызывает деформационное старение. Атомы азота в холоднодеформированной стали скапливаются на дислокациях, образуя атмосферы Коттрелла, которые блокируют дислокации. Сталь упрочняется, становится малопластичной. Старение особенно нежелательно для листовой стали (≤0,1%С), предназначенной для холодной штамповки. Последствия старения-разрывы при штамповке или образование на поверхности полос скольжения, затрудняющих ее отделку.

Водород находится в  твердом растворе или скапливается в порах и на дислокациях. Хрупкость, обусловленная водородом, проявляется тем резче, чем выше прочность материала и меньше его растворимость в кристаллической решетке. Наиболее сильное охрупчивание наблюдается в закаленных сталях с мартенситной структурой и отсутствует в аустенитных сталях. Повышенное содержание водорода в стали при ее выплавке может приводить к флокенам. Флокенами называют внутренние надрывы, образующиеся в результате высоких давлений, которые развивает водород, выделяющийся при охлаждении в поры вследствие понижения растворимости. Флокены в изломе имеют вид белых пятен, а на поверхности мелких трещин. Этот дефект обычно встречается в крупных поковках хромистых и хромоникелевых сталей. Для его предупреждения стали после горячей деформации медленно охлаждают или длительно выдерживают при температуре 250 °С. При этих условиях водород, имеющий большую скорость диффузии, не скапливается в порах, а удаляется из стали. Наводороживание и охрупчивание стали возможны при травлении в кислотах, нанесении гальванических покрытий и работе в водородсодержащих газовых средах.

Случайные примеси –  элементы, попадающие в сталь из вторичного сырья или руд отдельных  месторождений. Сталь, выплавленная из уральских руд, содержит медь, из керченских – мышьяк. Случайные примеси в большинстве случаев оказывают отрицательное влияние на вязкость и пластичность стали.

 

 

7. На какие свойства  стали разного назначения влияет  величина зерна?

 

 

Размер зерна влияет на свойства стали, особенно на вязкость, которая значительно выше у металлов с мелким зерном.

Внутри зерна феррита  нет сильных препятствий скольжению. Поэтому сопротивление его деформации течения создают границы зерна, и чем мельче зерно феррита, тем  выше предел текучести. Чем больше деформация, тем больше препятствий создают  внутри зерна сами следы скольжения и тем меньше влияет размер зерна на сопротивление течению. Поэтому предел прочности σв зависит от размера зерна феррита слабее, чем предел текучести σт. Если потребитель использует сталь «в состоянии поставки», характеристикой стали может быть величина зерна феррита. Но если сталь будет термически обрабатываться, то важно «наследственное зерно аустенита», которое получится после нагрева под закалку до стандартной для этой стали температуры. У мартенсита столь сложная субзеренная структура, что в ней границы зерна исходного аустенита - препятствие пренебрежимо слабое. Прочность мартенсита от величины зерна не зависит. Перлит, сорбит, бейнит - двухфазные структуры. Их прочность определяется прежде всего температурой образования (дисперсностью цементита), а не величиной зерна исходного аустенита.

Мелкое зерно желательно при всех структурах, если есть риск хрупкого разрушения. Поэтому в высококачественных легированных конструкционных сталях наследственное зерно аустенита  должно быть не крупнее 5-6-го балла.

 

 

8. Как управлять величиной  зерна?

 

Величина зерен зависит  от числа центров кристаллизации и скорости роста кристаллов. Чем  больше центров кристаллизации, тем  мельче зерно металла. Величина зерен, образующихся при кристаллизации, зависит от количества самопроизвольно зарождающихся центров кристаллизации и от количества нерастворимых примесей, всегда имеющихся в жидком металле.

Изменить число центров  и размер зерна можно четырьмя методами:

изменить скорость охлаждения и тем самым величину переохлаждения;

увеличить или уменьшить  перегрев металла перед разливкой;

ввести в жидкий металл мельчайшие нерастворимые примеси;

уменьшить путем добавки  активных растворимых примесей поверхностное  натяжение.

При небольшой степени  переохлаждения (малой скорости охлаждения) будет получено крупное зерно. С увеличением степени переохлаждения размер зерна в затвердевшем металле уменьшается.

Последние два метода осуществляются при модификации  введением специальных добавок. Ими являются оксиды (например, AI2O3), нитриды, сульфиды и другие соединения. Такие нерастворимые примеси являются готовыми центрами кристаллизации. Центрами кристаллизации в данном металле или сплаве могут быть только такие твердые частицы, которые по размеру соизмеримы с атомами основного металла. Кристаллическая решетка таких твердых частиц должна быть близка по своему строению и параметрам решетке кристаллизующегося металла. Чем больше таких частиц, тем мельче будут зерна закристаллизовавшегося металла. Чем выше скорость охлаждения, тем больше возникает центров кристаллизации и, следовательно, мельче зерно металла.

 

9. Что подразумевается  под оптимальной структурой?

 

Основными компонентами, из которых состоят стали и  чугуны, являются железо и углерод.

По структуре стали  бывают:

доэвтектоидные (феррит + перлит)

эвтектоидные (перлит)

заэвтектоидные (перлит + цементит)

 

Рис 1 Диаграмма состояния железо-цементит

 

Диаграмма состояния  железо-цементит. Ж-жидкость; Ц-цементит (индексы: 1- первичный II-вторичный; III- третичный); А-аустенит; Ф-феррит; П-перлит (эвтектоид, т.е. механическая смесь феррита и цементита); Л-ледебурит (эвтектика, т.е. механическая смесь аустенита и цементита) Линия ACD – ликвидус, линия AECF – солидус. CD - линия первичного цементита (из жидкого расплава); SE- линия вторичного цементита (при перекристаллизации аустенита) PQ- линия третичного цементита     (из феррита).

 

10. Опишите процесс  закалки стали

 

Закалка - термическая  операция, состоящая в нагреве  закаленного сплава выше температуры превращения с последующим достаточно быстрым охлаждением для получения структурно неустойчивого состояния сплава. Для сталей различают закалку до - и заэвтектоидных сталей. В структуре закаленной стали преобладает мартенсит. Мартенсит имеет высокую твердость и низкую вязкость, как конструкционный материал не используется. Для доэвтектоидных сталей температура закалки должна быть на 30 - 50 град. выше Ас3, а для заэвтектоидных - на 30 - 50 град. выше Ас1. При закалке доэвтектоидной стали с температуры выше Ас1, но ниже Ас3 в структуре наряду с мартенситом сохраняется часть феррита, который снижает твердость в закаленном состоянии и ухудшает механические свойства после отпуска. Такая закалка называется неполной. Для заэвтектоидных сталей оптимальная температура закалки лежит в интервале между Ас1 и Ас3 и теоретически является неполной. Здесь наряду с мартенситом закалки сохраняется часть оставшегося цементита, наличие которого полезно. Нагрев выше Ас3 приводит к вредным перегреву и обезуглероживанию стали. Закалка бывает объемной (под закалку нагревают насквозь все изделие) и поверхностной (осуществляют местный, чаще поверхностный нагрев).

В зависимости от формы  изделия, марки стали и нужного  комплекса свойств применяют  различные способы охлаждения:

Закалка в одном охладителе. Нагретую до нужной температуры деталь переносят в охладитель и полностью охлаждают. В качестве охлаждающей среды используют: воду – для крупных изделий из углеродистых сталей; масло – для небольших деталей простой формы из углеродистых сталей и изделий из легированных сталей. Основной недостаток – значительные закалочные напряжения.

Закалка в двух средах или прерывистая. Нагретое изделие  предварительно охлаждают в более  резком охладителе (вода) до температуры ~ 300°C и затем переносят в более мягкий охладитель (масло). Прерывистая закалка обеспечивает максимальное приближение к оптимальному режиму охлаждения. Применяется в основном для закалки инструментов. Недостаток: сложность определения момента переноса изделия из одной среды в другую.

Ступенчатая закалка. Нагретое до требуемой температуры изделие  помещают в охлаждающую среду, температура  которой на 30 – 50°С выше точки МН и выдерживают в течении времени, необходимого для выравнивания температуры  по всему сечению. Время изотермической выдержки не превышает периода устойчивости аустенита при заданной температуре. В качестве охлаждающей среды используют расплавленные соли или металлы. После изотермической выдержки деталь охлаждают с невысокой скоростью. Способ используется для мелких и средних изделий.

Изотермическая закалка. Отличается от ступенчатой закалки  продолжительностью выдержки при температуре  выше МН, в области промежуточного превращения. Изотермическая выдержка обеспечивает полное превращение переохлажденного аустенита в бейнит. При промежуточном превращении легированных сталей кроме бейнита в структуре сохраняется аустенит остаточный. Образовавшаяся структура характеризуется сочетанием высокой прочности, пластичности и вязкости. Вместе с этим снижается деформация из-за закалочных напряжений, уменьшаются и фазовые напряжения. В качестве охлаждающей среды используют расплавленные соли и щелочи.

Закалка с самоотпуском. Нагретые изделия помещают в охлаждающую  среду и выдерживают до неполного  охлаждения. После извлечения изделия, его поверхностные слои повторно нагреваются за счет внутренней теплоты до требуемой температуры, то есть осуществляется самоотпуск. Применяется для изделий, которые должны сочетать высокую твердость на поверхности и высокую вязкость в сердцевине (инструменты ударного действия: молотки, зубила).

 

 

 

 

11. Как управлять типом  структуры, образующейся при закалке

 

Основными параметрами  являются температура нагрева и  скорость охлаждения.

По температуре нагрева  различают виды закалки:

Полная, с температурой нагрева на 30…50°С выше критической  температуры Ас3. Применяют ее для  доэвтектоидных сталей. Изменения структуры  стали при нагреве и охлаждении происходят по схеме: Неполная закалка  доэвтектоидных сталей недопустима, так как в структуре остается мягкий феррит.

Неполная с температурой нагрева на 30…50 °С выше критической  температуры Ас1. Применяется для  заэвтектоидных сталей. Изменения структуры  стали при нагреве и охлаждении происходят по схеме: После охлаждения в структуре остается вторичный цементит, который повышает твердость и износостойкость режущего инструмента. После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита. Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.

Охлаждение при закалке.

Для получения требуемой  структуры изделия охлаждают  с различной скоростью, которая  в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали.

Режим охлаждения должен обеспечить необходимую глубину  закаленного слоя. При высоких  скоростях охлаждения при закалке  возникают внутренние напряжения, которые  могут привести к короблению и  растрескиванию.

Очень медленное охлаждение может привести к частичному отпуску мартенсита и увеличению количества аустенита остаточного, а следовательно к снижению твердости.

В качестве охлаждающих  сред при закалке используют воду при различных температурах, технические  масла, растворы солей и щелочей, расплавленные металлы.

 

12. Опишите понятия  «закаливаемость» и «прокаливаемость»

 

Закаливаемость и прокаливаемость  – важнейшие характеристики сталей.

Закаливаемость – способность  стали приобретать высокую твердость  при закалке.

Закаливаемость определяется твердостью поверхности закаленной детали и зависит главным образом от содержания углерода в стали. При закалке, различных деталей поверхность их, как правило, охлаждается со скоростью, большей VКр, следовательно, на поверхности образуется мартенсит, обладающий высокой твердостью. Стали с содержанием углерода менее 0,2% не закаливаются.

При закалке любых  деталей даже в самых сильных  охладителях невозможно добиться одинаковой скорости охлаждения поверхности и  сердцевины детали. Следовательно, если скорость охлаждения сердцевины при закалке будет меньше VKp, то деталь не прокалится насквозь, т. е. там не образуется мартенсит.

Прокаливаемостью –  называют способность стали закаливаться на определенную глубину.

Условились при оценке прокаливаемости закаленными считать слои, в которых содержится не менее 50% мартенсита (полумартенситная зона).

Установлено, что легирование  стали любыми элементами, кроме кобальта, увеличивает прокаливаемость, так  как при этом повышается устойчивость переохлажденного аустенита.

 

13. Что такое «полоса  прокаливаемости»? Дайте описание  «полосы прокаливаемости» стали,  заданной номером рисунка в  варианте задания

 

Прокаливаемость – способность  получать закаленный слой с мартенситной и троостомартенситной структурой, обладающей высокой твердостью, на определенную глубину. За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита. С введением в сталь легирующих элементов (Cr, Ni, Mo, Mn, W, V) закаливаемость и прокаливаемость увеличиваются.

 

Таблица 2 Полосы прокаливаемости стали 25ХГМ

 

 

 
14. Что  такое стали пониженной прокаливаемости,  и для каких деталей их применяют?

 

Под прокаливаемостью подразумевают глубину проникновения закаленной зоны. Несквозная прокаливаемость связана с тем, что деталь быстрее охлаждается с поверхности, чем с сердцевины. С уменьшением критической скорости закалки увеличивается и глубина закаленного слоя, и если Vk будет меньше скорости охлаждения в центре, то сечение закалится на сквозь. Если сечение велико и скорость на поверхности меньше Vk, то сталь не закалится даже на поверхности. Для практической оценки прокаливаемости используют величину – критический диаметр, т.е. максимальный диаметр (размер) образца, который прокаливается насквозь в данном охладителе. Чем лучше свойства охладителя тем больше Dкр.

Информация о работе Контрольная работа по материаловедению