Коррозия металлов

Автор работы: Пользователь скрыл имя, 22 Июня 2014 в 12:31, реферат

Описание работы

Обычно окалина состоит из несколько слоев (фаз), которые образованы соед. различного хим. состава и кристаллич. строения. Эти слои последовательно располагаются от внутр. края окалины к внешнему по мере убывания в составе продукта элементов, поступающих из твердого тела. В каждом слое устанавливается градиент концентраций реагирующих в-в, поддерживающий их диффузию, а в тонких приграничных зонах между слоями осуществляются промежут. твердофазные реакции, в результате которых изменяется кристаллич. решетка фаз. Наличие градиента концентраций означает отклонение состава каждой фазы от стехиометрического А m В n и существование в кристаллич. решетке двух типов дефектов - вакансий, т. е. узлов, не занятых атомами (или ионами) элемента, содержащегося в недостатке, и междоузельных атомов (или ионов) элемента, содержащегося в избытке. Кристаллич. решетка фазы м. б. представлена ф-лами или (- степень дефектности), которым соответствуют твердые р-ры вычитания или внедрения. Соответственно и диффузия происходит по двум механизмам: путем обмена атомов с вакансиями и перемещения атомов по междоузлиям.

Содержание работы

Причины протекания газовой коррозии. …………………………………………………………
Виды газовой коррозии .........................................................................................
Классификация пленок ……………………………………………………………………………………
Комбинированные методы защиты от коррозии…………………………………………..
Морская коррозия, методы защиты от неё…………………………………………………….

Файлы: 1 файл

Коррозия металлов Microsoft Office Word.docx

— 31.80 Кб (Скачать файл)

Задание №12

1.Причины протекания газовой  коррозии. Классификация пленок.

2. Комбинированные методы  защиты от коррозии.

3. Морская коррозия и  методы защиты от нее.

                                                                       Содержание 

Причины протекания газовой коррозии. …………………………………………………………

Виды газовой коррозии .........................................................................................

Классификация пленок ……………………………………………………………………………………

Комбинированные методы защиты от коррозии…………………………………………..

Морская коррозия, методы защиты от неё…………………………………………………….

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Газовая коррозия

происходит при непосредственно контакте твердого тела с химически активным газом. Характеризуется образованием на поверхности тела пленки продуктов хим. реакции между веществами, входящими в состав тела и адсорбируемыми из внеш. газовой среды. В дальнейшем эта пленка препятствует непосредственно контакту корродируемого материала с газом. Взаимодействия последних осуществляется посредством твердофазных реакций в тонких приповерхоностных слоях пленки продуктов вследствие встречной диффузии сквозь нее реагирующих веществв. Особенно интенсивно развивается Г. к. при высоких т-рах; возникающая при этом пленка продуктов, наз. окалиной, непрерывно утолщается.

 Обычно окалина состоит  из несколько слоев (фаз), которые образованы соед. различного хим. состава и кристаллич. строения. Эти слои последовательно располагаются от внутр. края окалины к внешнему по мере убывания в составе продукта элементов, поступающих из твердого тела. В каждом слое устанавливается градиент концентраций реагирующих в-в, поддерживающий их диффузию, а в тонких приграничных зонах между слоями осуществляются промежут. твердофазные реакции, в результате которых изменяется кристаллич. решетка фаз. Наличие градиента концентраций означает отклонение состава каждой фазы от стехиометрического А m В n и существование в кристаллич. решетке двух типов дефектов - вакансий, т. е. узлов, не занятых атомами (или ионами) элемента, содержащегося в недостатке, и междоузельных атомов (или ионов) элемента, содержащегося в избытке. Кристаллич. решетка фазы м. б. представлена ф-лами или (- степень дефектности), которым соответствуют твердые р-ры вычитания или внедрения. Соответственно и диффузия происходит по двум механизмам: путем обмена атомов с вакансиями и перемещения атомов по междоузлиям. В большинстве случаев Г. к. металлов элементы газовой среды образуют анионную подрешетку с дополнительно заполненными междоузлиями, металл Ч катионную подрешетку с большим числом вакансий. Типичный пример-образование в окалине железа твердого раствора  (вюстита).

 Слои окалины имеют  поликристаллич. строение, поэтому  скорость диффузии реагирующих  в-в и, следовательно, кинетика Г. к. существенно различны при диффузии  сквозь микрокристаллы (зерна) и  по межзеренным границам. Диффузия  сквозь микрокристаллы происходит  в соответствии с законами  Фика, и нарастание окалины характеризуется параболической зависимостью от времени. В случае сильно легированных материалов на кинетику Г. к. влияет образование фаз сложных оксидов и др. соединениями , включающих легирующие элементы. Если эти фазы слабо проницаемы для реагирующих веществв и образуют первичные слои окалины, Г. к. сильно замедляется. Это используют для создания жаростойких сплавов и защитных покрытий, причем в ходе коррозии тонкий поверхностный слой защищаемого материала оказывается сильно легированным. Сталь легируют Cr, Ni, Al, Si и др. Возможен другой крайний случай, когда в окалине образуется фаза сложного оксида с низкой т-рой плавления, которая в условиях Г. к. оказывается жидкой, что вызывает резкое ускорение процесса (т. наз. катастрофическое окисление). Так бывает, напр., при попадании на поверхностьсть лопаток турбин летучих или пылевидных продуктов сгорания топлива, содержащего примеси таких элементов, как Li или V.

 Диффузия по межзеренным  границам протекает ускоренно; в  этом случае на кинетику Г. к. существенно влияют особенности  микроструктуры окалины: размер  и форма зерен, их взаимная  кристаллографич. ориентация (текстура) и т. п. Существенное значение  имеет неравномерность распределения  легирующих элементов (обогащение  ими приграничных зон зерен). Изменение  уд. объема вещества при перестройке кристаллич. решетки на границах слоев создает мех. напряжения вплоть до возникновения трещин, что резко ускоряет Г. к.

Разновидность Г. к.-т. наз. внутр. окисление (и аналогичное ему внутр. азотирование или др. процессы) некоторых сплавов, содержащих элементы с высоким сродством к в-ву, диффундирующему из внеш. газовой среды. При этом в приповерхностном слое корродируемого материала (под окалиной) образуются мелкодисперсные частицы оксида такого элемента. Это м. б. использовано для изменения механических, в частности прочностных, свойств материалов.

В технологических средах часто встречаются следующие случаи газовой коррозии: водородная коррозия, обезуглероживание стали, сернистая коррозия, карбонильная коррозия, разрушение в среде хлора и хлористого водорода.

Водородная коррозия

Водородная коррозия – вид коррозионного разрушения, который наблюдается, в основном, в технологических средах, содержащих водород, при воздействии повышенных температур и давлений. Очень часто водородная коррозия наблюдается при гидрировании нефти и угля, синтезе метанола и аммиака и т.п.

При воздействии водорода металл может подвергаться двум видам разрушения: водородная коррозия и водородная хрупкость. Зачастую эти два вида протекают одновременно.

Водородная коррозия происходит вследствии химического взаимодействия водорода среды и карбидной составляющей стали. При повышенных температурах и давлениях водород, попадая на поверхность стального изделия, диссоциирует. Образовавшиеся атомы H2 очень подвижны, их диаметр составляет 0,1 нм.  Атомы водорода диффундируют вглубь металла, растворяясь в нем. Некоторая часть вступает в реакцию с углеродом:

C + 4H = CH4

При остывании металла, водород переходит в газообразное состояние, создавая достаточно высокое внутреннее давление. Это охрупчивает металл. На поверхности появляются трещины, вздутия. Прочность стали  сильно уменьшается.

 

Обычно водородная коррозия появляется из-за нескольких причин:

- повышение внутреннего  давления при образовании в  порах CH4 и в результате – растрескивание по границам зерен;

- обезуглероживание стали, которое происходит из-за восстановления  водородом цементита (Fe3C входит в состав сталей):

Fe3C + 2H2 = 3Fe + CH4;

-    водород проникает  вглубь стали, образуя хрупкий  твердый раствор водорода в  Fe.

У водородной коррозии есть, так называемый, инкубационный период, при котором какие-либо внешние признаки разрушения отсутствуют. В среднем этот период может составлять около 1000 часов (зависит от условий).

Расчеты по термодинамике показывают, что при повышенном давлении и температуре около 350 – 600 °С цементит почти полностью разрушается.

Реакция, при которой образуется СН4 (метан) может протекать в сторону уменьшения объема, т.е. она обратимая. При повышении температуры равновесие реакции сдвигается вправо. Поэтому на нефтехимических производствах температуру поддерживают до 200 °С, при давлении около 50 МПа.

Скорость протекания водородной коррозии зависит не только от рабочих давлений и температур, но и от глубины обезуглероживания стали.

Обезуглероживание стали (декарбюризация)

Обезуглероживание стали (декарбюризация) -  процесс обеднения поверхностного слоя металла углеродом. Наблюдается при температурах свыше 650 °С.

Чаще всего процесс обезуглероживания стали протекает в окислительных атмосферах (O2, H2O, CO), но может происходить и в атмосфере водорода. Кислород окисляет сначала углерод, а потом только железо. Обезуглероживание стали проходит интенсивнее с увеличением в газовой среде количества углекислого газа, влаги и кислорода. Если газовая среда содержит больше угарного газа и метана – скорость декарбюризации уменьшается.

Процесс восстановления цементита Fe3C является основой процесса обезуглероживания стали:

Fe3C + ½O2 = 3Fe + CO

Fe3C + CO2 = 3Fe + 2CO

Fe3C + H2O = 3Fe + CO + H2

При температуре выше 650 °С атомы углерода более подвижны, чем атомы основного металла (железа), коэффициент диффузии атомов углерода также превышает коэффициент диффузии атомов Fe. Обезуглероживание стали протекает тогда, когда углерод диффундирует быстрее, чем окисляется железо.

Обезуглероживание сопутствует очень многим технологическим процессам, таким, как разнообразные реакции горения, окислительного крекинга и др. Сталь, подвергшаяся декарбюризации, теряет свою прочность и твердость, тем самым ухудшается ее качество, сокращается срок службы готовых изделий.

Декарбюризация (обезуглероживание стали) наблюдается после образования пленки оксидов на поверхности металла. С утолщением пленки окалина образуется медленнее, при этом обезуглероженный слой утолщается (может уходить на несколько миллиметров вглубь основного металла).

Для уменьшения степени обезуглероживания в сталь вводятся добавки вольфрама и алюминия. Незначительное влияние оказывают хром, марганец и кобальт.

 Сернистая коррозия (коррозия в среде серы)

Различные соединения серы оказывают большое влияние на высокотемпературную газовою коррозию. Самым вредным и опасным среди таких соединений является сероводород (даже более чем сернистый ангидрид).

Сернистый ангидрид (SO2) выделяется в результате многих технологических процессов. Под воздействием этого соединения при температуре свыше 300 °С образуется на поверхности черных металлов слоистая окалина, которая состоит из FeS, FeO и Fe3O4.

Очень негативное влияние оказывает сернистый газ на чугун. При температурах выше 400 °С детали из чугуна окисляются изнутри, идет увеличение объема до 10%. Сильно уменьшается  прочность чугунных изделий, наблюдается коробление, появляются  поверхностные трещины и деталь разрушается. Это явление получило название «рост чугуна». Максимальное повреждение наблюдается при температуре около 700 °С.

Карбонильная коррозия

Карбонильная коррозия часто наблюдается в технологических средах, а именно, в случаях, когда при повышенном давлении и температуре протекают процессы с участием углерода (II). Карбонильная коррозия наблюдается при конверсии окиси углерода и метана,  получении бутилового и метилового спиртов и т.д.

Оксид углерода при  нормальном давлении и температуре по отношению к металлам инертен. Но при повышенных значениях температуры и давления CO реагирует с большинством металлов. В результате такого взаимодействия  образуются карбонилы. Например, процесс образования карбонила железа описывается реакцией:

 

Fe + nCO = Fe(CO)n

С оксидом  углерода железо может образовать три вида карбонилов: Fe(CO)5 (пентакарбонил), Fe(CO)4 (тетракарбонил) и Fe(CO)9 (нонакарбонил). При повышении температуры все эти соединения разлагаются, т.к. не обладают достаточной устойчивостью. Наибольшей стойкостью, среди вышеперечисленных карбонилов железа, обладает пентакарбонил, который  почти полностью диссоциирует на CO и Fe уже при температуре выше 140°С. Оксид углерода может образовывать подобные соединения со многими металлами.

Карбонильная коррозия протекает только в верхних слоях. Разрыхление и разрушение поверхностного слоя металла в глубину может достигать до 5 мм.  Глубже структура не меняется.

При высоких температурах (до 700°С) и давлениях (до 35 МПа) для защиты от карбонильной коррозии металлов можно применять хромоникелевые стали, в состав которых входит около 20% Ni и 23% Cr, хромистые с содержание хрома 30%, а также марганцевые бронзы.  Менее легированные стали (например, Х18Н9) можно использовать в случаях, когда давление и температура несколько ниже 700°С.

Карбонильная коррозия наблюдается также при синтезе мочевины. В качестве исходного сырья для получения CO(NH2)2 используется углекислый газ и NH3. Сам процесс протекает при давлении в 20 МПа и температуре 175 - 190°С. Для изготовления аппаратов, в которых протекают основные процессы синтеза, нержавеющие хромистые стали абсолютно не подходят. Самой высокой стойкостью к карбонильной коррозии в данных условиях обладает  хромоникелевая сталь, в состав которой входит медь и  молибден, а также некоторые молибденовые стали. Для повышения коррозионной устойчивости основных агрегатов, в которых проходит синтез мочевины, необходима  очистка газов от сероводорода, а также обязательное введение в систему O2 в количестве  0,5-1 об.% от содержания углекислого газа.

Коррозия в среде хлористого водорода и хлора

В среде газообразного хлора и хлористого водорода металлы  ведут себя не так, как в других агрессивных средах. Дело в том, что при воздействии хлористого водорода и газообразного хлора на поверхности металла образуются  хлористые соли. Эти соединения обладают низкой температурой плавления, а в некоторых случаях, при сильном повышении температуры, они возгоняются (Т возгонки AlCl3 -  192°С). Почти все аналогичные процессы проходят с  выделением тепла (положительный тепловой эффект).  В результате нагрева хлориды, которые образовались на поверхности металла, плавятся и разлагаются (нарушается их структура).

 

Хлоридные пленки не обладают высокими защитными свойствами.

В атмосфере сухого хлора при низких температурах очень многие металлы обладают хорошей устойчивостью. Но при нагревании  металл начинает реагировать с хлором и происходит воспламенение (протекает экзотермическая реакция). Температура, при которой происходит воспламенение, во многом определяется природой металла и зависит от величины теплового эффекта.

Температуры воспламенения некоторых металлов в среде сухого хлора:

- свинец – 90 – 100°С;

- железо и сталь –  около 150°С;

- титан – около 20°С;

- никель – около 500°С;

- медь - 200°С.

Многие сплавы и металлы при комнатной температуре обладают удовлетворительной стойкостью и в среде хлористого водорода. Но с повышением температуры постепенно идет снижение стойкости. У каждого металла существует своя  максимальная температура, при которой он еще относительно стойкий.

Информация о работе Коррозия металлов