Автор работы: Пользователь скрыл имя, 19 Апреля 2013 в 22:46, отчет по практике
Данная работа представляет собой отчет по производственной практике. Отчет составлен в сжатой форме и иллюстрирован чертежами, схемами установок, графиками экспериментальных данных. Часто перед предприятиями возникает необходимость модернизации оборудования или замены морально устаревших средств современными комплексами, с сохранением аппаратной и программной совместимости между старыми и обновленными компонентами системы. В таких случаях также необходимо в кратчайшие сроки обучить сотрудников предприятия эффективно использовать новое оборудование.
Введение………………………………………………………………………………………...
1. Общие сведения об алюминиевой промышленности……………………………………..
2. Автоматизация процесса электролиза……………………………………………………...
3. Автоматизированная система управления технологическим процессом литейного отделения……………………………………………………………………………………………...
4. Автоматизированная система управления газоочистной установкой №3 ОАО "БрАЗ"
5. Система управления отгрузкой кремния в "биг-бэги"…………………………………….
6. Цех анодной массы ОАО «БрАЗ»…………………………………………………………..
6.1. Общие сведения об анодной массе……………………………………………………..
6.2. Нейросетевая модель прогнозирования качества анодной массы для условий ОАО «БрАЗ»……………………………………………………………………………………….
6.3. Система автоматизации ТП прокалочного и котельного отделений цеха анодной массы ОАО "БрАЗ"………..
Заключение……………………………………………………………………………………...
Список использованных источников………………………………………………………….
Содержание
Введение…………………………………………………………
1. Общие сведения об алюминиевой промышленности……………………………………..
2. Автоматизация процесса
3. Автоматизированная система
4. Автоматизированная система
5. Система управления отгрузкой кремния в "биг-бэги"…………………………………….
6. Цех анодной массы ОАО «БрАЗ»…………………………………………………………..
6.1. Общие сведения об анодной массе……………………………………………………..
6.2. Нейросетевая модель прогнозирования
качества анодной массы для условий ОАО
«БрАЗ»………………………………………………………………
6.3. Система автоматизации ТП прокалочного и котельного отделений цеха анодной массы ОАО "БрАЗ"……….. ………………………………………………………………...
Заключение……………………………………………………
Список использованных источников……………………………………………………
Введение
Применение автоматизированных систем управления технологическими процессами позволяет более рационально использовать трудовые ресурсы предприятия. Использование автоматизированных рабочих мест повышает эффективность труда сотрудников предприятия, резко сокращая затраты на выполнение рутинных и трудоемких операций.
Большинство российских компаний разрабатывает АСУ ТП и программное обеспечение для решения самых разных задач, стоящих перед предприятиями, используя при этом оборудование для промышленной автоматизации, технологии и среды разработки, созданные всемирно известными компаниями, благодаря этому наши решения надежны, просты в обслуживании и соответствуют распространенным промышленным стандартам.
Часто перед предприятиями возникает необходимость модернизации оборудования или замены морально устаревших средств современными комплексами, с сохранением аппаратной и программной совместимости между старыми и обновленными компонентами системы. В таких случаях также необходимо в кратчайшие сроки обучить сотрудников предприятия эффективно использовать новое оборудование. Корпорация РусАЛ совместно с компаниями разрабатывающими АСУ ТП и программное обеспечение имеет богатый опыт по выполнению подобных проектов на крупнейших промышленных предприятиях Сибири.
Общие сведения об алюминиевой промышленности
Свойства алюминия и области его применения
Алюминий — химический элемент третьей группы периодической системы элементов Д. И. Менделеева. Его порядковый номер 13, атомная масса 26,98. Устойчивых изотопов алюминий не имеет.
Алюминий обладает целым
рядом свойств, которые выгодно
отличают его от других металлов. Это
— небольшая плотность
Значительная часть алюминия используется в виде сплавов с кремнием медью, магнием, цинком, марганцем и другими металлами. Промышленные алюминиевые сплавы обычно содержат не менее двух-трех легирующих элементов, которые вводятся в алюминий главным образом для повышения механической прочности.
Наиболее ценные свойства всех алюминиевых сплавов — малая плотность (2,65—2,8), высокая удельная прочность (отношение временного сопротивления к плотности) и удовлетворительная стойкость против атмосферной коррозии.
Алюминиевые сплавы подразделяют на деформируемые и литейные. Деформируемые сплавы подвергают горячей и холодной обработке давлением, поэтому они должны обладать высокой пластичностью. Из деформируемых сплавов широкое применение нашли дуралюмины — сплавы алюминия с медью, магнием и марганцем. Имея небольшую плотность, дуралюмины по механическим свойствам близки к мягким сортам стали. Из деформируемых алюминиевых сплавов, а также из чистого алюминия в результате обработки давлением (прокатка, штамповка) получают листы, полосы, фольгу, проволоку, стержни различного профиля, трубы. Расход алюминия на изготовление этих полуфабрикатов составляет около 70 % его мирового производства. Остальной алюминий применяется для изготовления литейных сплавов, порошков, раскислителей, а также для других целей.
Из литейных сплавов
получают фасонные отливки различной
конфигурации.
Широко известны литейные сплавы на основе
алюминия — силумины, в которых основной
легирующей добавкой служит кремний (до
13%).
В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов — авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.
Использование алюминия и его сплавов во всех видах транспорта и в первую очередь — воздушного позволило решить задачу уменьшения собственной (“мертвой”) массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали. Алюминием и его сплавами отделывают железнодорожные вагоны, изготовляют корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы.
Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.
Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.
Алюминий высокой чистоты находит широкое применение в новых областях техники — ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал.
В металлургической промышленности
алюминий используют в качестве восстановителя
при получении ряда металлов (например,
хрома, кальция, марганца) алюмотермическими
способами, для раскисления стали, сварки
стальных деталей.
Широко применяют алюминий и его сплавы
в промышленном и гражданском строительстве
для изготовления каркасов зданий, ферм,
оконных рам, лестниц и др. В Канаде, например,
расход алюминия для этих целей составляет
около 30 % от общего потребления, в США—
более 20 %.
По масштабам производства и значению в народном хозяйстве алюминий прочно занял первое место среди других цветных металлов.
История развития алюминиевой промышленности
Алюминий сравнительно недавно стал промышленным металлом. Впервые металлический алюминий получил датский физик Г. Эрстед в 1825 г., восстановив хлористый алюминий амальгамой калия. В дальнейшем способ Эрстеда был улучшен: амальгаму калия заменили металлическим калием, а затем—более дешевым натрием; нестойкий и гигроскопичный хлористый алюминий заменили двойным хлоридом алюминия и натрия (AlCl3-NaCI).
В 1865 г. русский ученый Н. Н. Бекетов предложил получать алюминий вытесненном его из фтористых соединении магнием. Этот способ нашел применение в ряде стран Западной Европы. Производство алюминия “химическими” методами осуществлялось примерно в течение 35 лет (с 1854 до 1890 г.). За это время было получено около 200 т алюминия. В конце 80-х годов прошлого столетия химические способы производства алюминия были вытеснены электролитическим.
Основоположниками электролитического способа производства алюминия являются Поль Эру во Франции и Чарльз Холл в США, которые в 1866 г. независимо друг от друга заявили аналогичные патенты на способ получения алюминия электролизом глинозема (А1203), растворенного в расплавленном криолите (Na2AIF6). С открытием электролитического способа началось быстрое развитие алюминиевой промышленности. Если в 1900 г. выпуск алюминия во всем мире составил 5,7 тыс. т, но уже к 1930 г. он приблизился к 270 тыс. т, в 1950 г. составил около 1,3 млн. т, а в 1980 г. — более 12 млн. т.
В начале прошлого столетия русские ученые (Н. Н. Бекетов, П. П. Федотьев, Н. А. Пушин, Д. А. Пеняков, Е. И. Жуковский и другие) выполнили ряд исследований, сыгравших большую роль в развитии мировой алюминиевой промышленности. Под руководством П. П. Федотьева были проведены глубокие исследования теоретических основ электролитического способа получения алюминия, а также ряд других процессов, связанных с электролизом криолито-глиноземных расплавов. Результаты этих исследований получили мировую известность.
В 1882—1892 гг. химик К. П. Байер разработал в России щелочной способ получения глинозема, который до настоящего времени является основным в мировой алюминиевой промышленности. В 1895 г. Д. А. Пеняков предложил способ получения глинозема из бокситов спеканием с сульфатом натрия в присутствии угля, а А. Н. Кузнецов и Е. И. Жуковский в 1915 г.—способ получения глинозема из низкосортных руд путем восстановительной плавки их на шлаки алюминатов щелочноземельных металлов. Н. А. Пушин с сотрудниками в 1914 г. впервые в нашей стране получил алюминий “русского происхождения”, т. е. Из отечественных сырья и материалов.
Построенная в 1926 г. первая крупная гидроэлектростанция на р. Волхов явилась энергетической базой первого в СССР Волховского алюминиевого завода.
В 1930 г. в Ленинграде был пущен
опытный завод, который сыграл большую
роль в развитии советской алюминиевой
промышленности. На этом заводе испытывалось
оборудование, осваивался технологический
режим, готовились рабочие и инженерно-технические
кадры для первых советских алюминиевых
заводов. Одновременно были проведены
исследования по производству электродных
изделий, необходимых для получения алюминия.
В 1931 г. были созданы Научно-исследовательский
институт алюминиевой промышленности
(НИИСалюминпй) и проектный институт—гипроалгомпний.
Позднее НИИСалюминий и Гипроалюминий
были объединены в единый Всесоюзный алюминиево-магниевын
институт (ВАМИ).
14 мая 1932 г. вступил в эксплуатацию
Волховский алюминиевый завод,
а в 1933 г. на базе Днепровской
ГЭС—Днепровский алюминиевый
В период с 1926 по 1936 г. в Государственном институте прикладной химии (ГИПХ) под руководством А. А. Яковкина был разработан способ получения глинозема из тихвинских бокситов спеканием их с содой и известняком. В результате впервые была разрешена проблема переработки высококремнистых бокситов. В 1938 г. вошел в эксплуатацию Тихвинский глиноземный завод, а в 1939 г. на базе высококачественных североуральских бокситов—Уральский алюминиевый завод.
В начале Великой Отечественной войны Волховский и Днепровский алюминиевые заводы и Тихвинский глиноземный были выведены из строя. Оборудование этих заводов вывезли на Урал и в Сибирь. В годы Великой Отечественной войны был значительно расширен Уральский алюминиевый завод к введены в эксплуатацию Новокузнецкий (1943 г.) и Богословский (1945 г.) алюминиевые заводы.
В послевоенные годы были восстановлены Волховский и Днепровский алюминиевые заводы и Тихвинский глиноземный завод, а также вошли в эксплуатацию новые алюминиевые заводы: Канакерский (1950 г.), Кандалакшский (1951 г.), Надвоицкий (1954 г.), Сумгаитский (1955 г.). Ряд крупных алюминиевых заводов был пущен на базе дешевой электроэнергии гидроэлектростанций, построенных на Волге и реках Сибири: Волгоградский (1959 г.). Иркутский (1962 г.). Красноярский (1964 г.), Братский (1966 г.) и Таджикский (1975 г.).