Автор работы: Пользователь скрыл имя, 11 Января 2013 в 19:54, реферат
Сваркой называется процесс получения неразъемных соединений посредством установления межатомных связей между соединёнными частями при их нагревании и / или / пластической деформировании / ГОСТ 2601 – 84 /.
Сварка является одним из основных технологических процессов в машиностроении и строительстве. Основным видом сварки является дуговая сварка.
1. Вступление
2. Прогрессивные методы сварки, классификация процессов сварки, инструменты и приспособления.
3. Приготовление и организация рабочего места сварщика
4. Сварка среднелегированных термическиупроченных сталей.
5. Техника безопасности и противопожарные мероприятия
6. Литература
Сваркой называется процесс получения неразъемных соединений посредством установления межатомных связей между соединёнными частями при их нагревании и / или / пластической деформировании / ГОСТ 2601 – 84 /.
Сварка является одним из основных технологических процессов в машиностроении и строительстве. Основным видом сварки является дуговая сварка.
Основоположниками дуговой сварки является русские учённые и инженеры – В.В. Петров (1761 – 1834), Н.Н. Бенардос (1842 –1905) и Н.Г. Славянов (1854 – 1897). Выдающийся в клад в разработку теоретических основ сварки внесли советские учёные: В.П. Вологдин, В.П. Никитин, К.К. Хренов, Е.О. Патон, Г.А. Николаев, Н.О. Окерблом, Н.Н. Рыколин, К.В. Любавский, Б.Е. Патон.
В 1802 году впервые в мире профессор Санкт Петербургской медика – хирургической академии Василий Владимирович Петров открыл и наблюдал дуговой разряд от построенного им сверхмощного "вольтового столба", который стоял из 2100 пар разнородных кружков – элементов /медь + цинк/, проложенные бумажными кружками, смоченные водным раствором нашатыря. Этот столб, или батарея был наиболее мощным источником электрического тока в то время. Проделав большое количество опытов с этой батареей, он показал возможность использования электрической дуги для освещения и плавления металлов.
На современном этапе развития сварочного производства, в вязи с развитием научно-технической революции резко возрос диапазон свариваемых толщин, материалов, видов сварки.
В настоящее время сваривают материалы толщиной от нескольких микрон (в микроэлектронике) до нескольких метров (в тяжелом машиностроение). Наряду с конструкционными сталями сваривают специальные стали и сплавы на основе титана, циркония, молибдена, ниобия и других материалов, также разнородные материалы.
Сущность сварки заключается в сближении элементарных частиц свариваемых частей настолько, чтобы между ними начали действовать межатомные связи, которые обеспечивают прочные соединения.
В зависимости от вида энергии, применяемой при сварке, различают три класса сварки: термический, термомеханический, механический.
К термическому классу относятся виды сварки, осуществляемой плавлением, т.е. местным расплавлением соединяемых частей с использованием тепловой энергии.
Основным источниками теплоты при сварке плавлением являются: сварочная дуга, газовое пламя, лучевые источники энергии и теплота выделяется при электрошлаковом процессе.
Источники теплоты характеризуется температурой и концентрацией, определяемой наименьшей площадью нагрева (пятно нагрева) и наибольшей плотностью тепловой энергией в пятне нагрева.
Основные виды сварки термического класса:
При термитной сварки используют теплоту, образующееся в результате сжигания термит – порошка, состоявшегося из смеси алюминия и оксида железа.
К термомеханическому классу относятся виды сварки, при которых используются тепловая энергия и давление:
К механическому классу относятся виды сварки, осуществляемых с использованием механической энергии и давлением:
Наибольший объём среди
На рисунки I дуга горит между стержнем электрода (1) и основным металлом (---). Под действием теплоты дуги электрод и основной метал плавится, образуя металлическую сварочную ванну (4). Капли жидкого металла (8) с расплавляемого электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода (2), образуя газовую защиту (3) вокруг дуги и жидкую шлаковою ванну на поверхности расплавленного метала. Металлические и шлаковые ванны вместе образуют сварочную ванну. По мере движения дуги металл сварочной ванны затвердевает и образуются сворной шов (6). Жидкий шлак по мере остывания образует на поверхности шва твёрдую шлаковою корку, которая удаляется после остывания шва.
Для обеспечения заданного состава и свойства сварку выполняют электродами, к которым предъявляют специальные требования.
На рисунке 1, стрелкой / ------ / - указано направление сварки.
Прогрессивным методом сварки также является аргонодуговая сварка.
Аргонодуговая сварка – дуговая сварка. При которой в качестве защитного газа используется аргон.
Применяют аргонодуговую сварку неплавящемся вольфрамовым и плавящимся электродом.
Этот процесс предназначен главным образом для металлов толщенной менее 3-4 мм. Большинство металлов сваривают на постоянном токе прямой полярности. Сварка алюминия, магния и бериллия ведут на переменном токе.
При прямой полярности /плюс на изделия, минус на электроде/, лучшее условие термоэлектронной эмиссии, выше стойкость вольфрамового электрода и допускаемый придельной ток. Допускаемый ток, при использование вольфрамового электрода ø3 мм составляет ориентировочно при прямой полярности 140-280 А, обратной полярности – только 20-40 А. Дуга при прямой полярности легко зажигается и горит устойчиво при напряжении 10-15 В. в широком диапазоне плотностей тока.
При обратной полярности возрастает напряжения дуги, уменьшается устойчивость её горения, резко уменьшается стойкость электрода, повышается его нагрев и расход. Эти особенности и дуги обратной полярности делают её непригодной для непосредственного применения в сварочных процессе. Однако дуга обратной полярности обладает важным технологическим свойством: при её действии с поверхности свариваемого метала удаляется окислы и загрязнения. Это явление объясняется тем, что при обратной полярности и поверхности металла бомбардируется тяжелыми положительными ионами аргона, которые перемещаясь под действием электрического поля от плюса /электрод/, к минусу /изделия/, разрушают окисные плёнки на свариваемом металле, а выходящие с катода /с поверхности изделия/ электроны способствуют удалению разрушенных окисных плёнок.
Этот процесс удаления называют катодным распылением.
Аргонодуговой сваркой выполняют швы стыковых, тавровых и угловых соединений.
При толщине листа до 2,5 мм целесообразно сваривать с отбортовкой кромок при малой величине зазора /0,1-0,5 мм/ можно сваривать тонколистовой метал толщенной от 0,4 до 4 мм без разделки кромок
Расположение горелки и
На рисунке 2 изображена аргонодуговая сварка:
Ручную сварку выполняют наклонной
горелкой углом вперёд, угол наклона
к поверхности изделия
По окончанию сварки дугу постепенно обрывают для заварки кратера. При ручной сварке – её постепенным растяжением, при автоматической – спец. устройством для сварки кратера, обеспечивающим постепенное уменьшение сварочного тока.
Для защиты охлаждающего металла, подачу газа прекращают через 10-15 сек. после выключения тока.
Примерный режим ручной аргонодуговой сварки вольфрамовым электродам стыкового соединения из высоколегированной стали, толченой 3 мм: диаметр вольфрамового электрода 3-4мм, диаметр присадочной проволоки 1,6-2 мм, сварочный ток 120-160 А, напряжения на дугу 12-16 В, расход аргона 6-7 л/мин.
Допустимый зазор тем меньше, чем меньше толщина старимого метала. Листы, толщиной более 4 мм сваривают в стык с разделкой кромок, при этом допустимый зазор должен быть не более 1,0 мм.
Аргонодуговая сварка плавящимся электродом. Область применения этого вида – сварка цветных металлов (AI, Mg, Cu, Ti) и их сплавы и легированных сталей (Рис. 3 а, б, в.).
Рис. 3
Рис.3а изменением сварочного тока и напряжения при импульсной сварке вольфрамовым электродом.
Рис 3 б, в. – Вид швов.
I св |
сварочный ток |
I деж |
ток дежурной дуги |
т п |
время паузы |
t св |
время сварки |
Импульсно – дуговая сварка вольфрамовым электродом (рис. 3) заключается в применении в качестве источника теплоты "пульсирующей" дуги с целью концентрации во время теплового и силового воздействия дуги на основной и электродный метал. При стеснённом теплоотводе полнее используется теплота на расплавлении основного металла, чем при сварки постоянной дугой.
Дуга пульсирует с заданным соотношением импульса и паузы /рис. 3/. Сплошной шов получается расплавлением отдельных точек с определённым перекрытием. Повторным возбуждением и устойчивость дуги обеспечивается благодаря горению дежурной дуги (10-15 % от силы тока в импульсе). Наряду с силой тока, напряжениям, скоростью сварки к основным параметрам относятся:
Длительность импульса Длительность паузы Длительность цикла сварки Шаг точек |
/tсв/ /tп/ t = tсв+tп S=Uсв(+св+tп) где Uсв скорость сварки |
Отношения tп/tсв =G называется жесткостью режима
Аргонодуговая сварка плавящимся электродам
Сварка происходит с капельным и струнным переносам.
С увеличением тока капельный перенос метала электрода сменяется струйным и глубина прославления увеличивается. Критическая величена тока, при котором капельный перенос сменяется струйным, составляет: при сварке сталей – от 60 до 120 А на 1 мм2 сечения электродной проволоки. При сварке алюминия – 70 А.
При аргонодуговой сварке плавящимся электродам предъявляется более жёсткие требования – перед сваркой необходимо тщательная отчистка кромок свариваемых материалов и проволоки.
Вид сварки, который является прогрессивным – газовая сварка
Газовая сварка выполняется при низких скоростях нагрева и охлаждения металла, что приводит к укрупнению зёрен около шовного металла, низкой прочности сварного соединения и большим деформациям сварного соединения.
В настоящие время газовая сварка находит применения при ремонте литых изделий из чугуна и иногда цветных металлов, исправления дефектного литья, при монтаже сантехнических стальных тонкостенных узлов, толченой до 2 мм, наплавке, сварке легко плавких металлов и тд. Газовое пламя применяется при пайке, для подогрева, с целью термической обработки металла, отчистки от ржавчины.
Газовой сваркой можно выполнять любые швы в пространстве. Наиболее трудно выполнять потолочные швы, ввиду стекания капель металла из сварочной ванны.
К преимуществам газовой сварки относятся: простота способа, несложность оборудования, отсутствия источника электрической энергии.
Параметры режима:
В зависимости от свариваемого материала, его толщины и типа изделия выбирают следующие основные параметры режима сварки: