Автор работы: Пользователь скрыл имя, 25 Октября 2013 в 00:53, контрольная работа
Месторождения титана экзогенного типа приурочены к массивам, подверженным глубокому химическому выветриванию древних метаморфогенных комплексов, содержащих устойчивые соединения титана. В процессе формирования таких месторождений первоначально создаются остаточные элювиально-делювиальные месторождения не обогащенных устойчивыми минералами титана породы, а затем при размыве горных этих кор выветривания формируются богатые россыпи титановых минералов. В структурно-геологическом отношении для поисков богатых и крупных месторождений титана благоприятными являются современные или древние образования прибрежных морских равнин.
РЕФЕРАТ………………………………………………………………………….. 3
ВВЕДЕНИЕ………………………………………………………………………… 4
1. Применение труб сварных из титана и титановых сплавов в сфере производства и потребления………………………………………… 6
2. Классификационные признаки труб сварных из титана и титановых
сплавов………………………………………………………..................... 7
3. Потребительские свойства труб сварных из титана и титановых
сплавов…………………………………………………………………………… 9
4. Технология производства труб сварных из титана и титановых сплавов и ее технико-экономическая оценка……………………………………… 11
5. Нормативно-технические документы на трубы сварные из титана и титановых сплавов, нормируемые показатели качества в соответствии с требованиями нормативно-технической документации…………………………. 17
6. Контроль качества. Требование нормативно-технических документов на правила приемки, хранения, испытания и эксплуатации труб сварных из титана и титановых сплавов…………………………………………………………… 21
7. ЗАКЛЮЧЕНИЕ……………………………………………........................ 25
8. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……….............. 26
По способам производства деталей различаются деформируемые и литейные титановые сплавы.
Общее направление при разработке новых титановых сплавов — создание комплексно-легированных сплавов, которые обладают более высоким сочетанием свойств по сравнению с простыми сплавами. Большинство титановых сплавов применяется в термически обработанном состоянии.
Основными свойствами труб сварных из титана и титановых сплавов являются:
1. Плотность - представляет собой отношение массы к объему.
2. Твердость - это сопротивление поверхности прониканию в нее инородных тел. Чем выше твердость, тем больше требуется времени для механической обработки и тем меньше износ при истирании.
3. Предел прочности при изгибе. При поперечном изгибе со стороны действия усилия возникают напряжения сжатия, а с противоположной – напряжения растяжения. Предел прочности при сжатии определяется разрушающей силой сжатия, действующей на поперечное сечение образца в направлении оси последнего, равномерно по всему сечению. Предел прочности при растяжении измеряется отношением нагрузки, разрывающей образец, к площади его поперечного сечения.
4.Сплющивание
– это результат воздействия
двух основных сил —
5. Загиб – это дугообразное искривление.
6. Временное сопротивление - сопротивление труб при растяжении в Мпа.
7. Относительное удлинение – свойство труб удлиняться при длительных нагрузках.
4. Технология производства труб сварных из титана и титановых сплавов и ее технико-экономическая оценка.
Промышленные способы получения труб сварных из титана и титановых сплавов базируются на использовании в качестве исходного сырья титановых концентратов, содержащих не менее 92-94 % TiO2 в рутиловых концентратах, 52-65 % TiO2 в ильменитовых концентратах из россыпей и 42-47 % TiO2 в ильменитовых концентратах из коренных месторождений.
В России ильменитовые концентраты используются главным образом в качестве сырья для выпуска диоксида титана и металла, а также выплавки ферросплавов и карбидов, а рутиловые – для производства обмазки сварочных электродов.
Около 50 % мирового производства титановых концентратов базируется на переработке руд россыпных месторождений и 50 % – на переработке руд коренных месторождений.
Обогащение руд всех россыпных и большей части руд коренных месторождений осуществляются с использованием в начале процесса наиболее простого и дешевого гравитационного способа. При обогащении сложных коренных руд иногда используют флотацию, что, в частности, относится к переработке руд месторождения титаномагнетиков Телнес в Норвегии.
Процесс нефлотационного обогащения, как правило, осуществляется в две стадии. Первая стадия заключается в первичном гравитационном обогащении, при котором получается черновой коллективный концентрат. Вторая стадия заключается в селекции (доводке) указанного коллективного концентрата методами магнитной и электрической сепарации с получением индивидуальных рутилового, ильменитового, циркониевого, монацитового, дистенсиллиманитового, ставролитового и других концентратов.
В процессах первичного обогащения широкое применение получили усовершенствованные гидроциклоны, многоярусные конические и многосекционные винтовые сепараторы и в меньшей степени концентрационные столы и другое сепарационное оборудование.
Доводка черновых коллективных концентратов основана на использовании в различном сочетании электромагнитной и электростатической сепарации. Наибольшей магнитной восприимчивостью среди входящих в состав коллективных концентратов минералов обладает ильменит и следующий за ним монацит, в то время как рутил и циркон немагнитны.
Селекция входящих в состав
коллективных концентратов немагнитных
минералов основана на использовании
различной их электрической проводимости,
по мере убывания которой указанные минералы
располагаются в следующий ряд: магнетит–ильменит–рутил–
Таким образом, если в коллективном концентрате преобладают рутил, циркон и алюмосиликаты, то процесс доводки начинается обычно с передела электростатической сепарации. Если же в коллективном концентрате преобладает ильменит, то технологический процесс доводки начинается с передела магнитной сепарации.
При доводке черновых коллективных концентратов широко применяется винтовые сепараторы, пластинчатые и роликовые магнитные сепараторы мокрого и сухого действия с высокой напряженностью магнитного поля, магнитные сепараторы с перекрещивающимися лентами, а также пневматические и мокрые концентрационные столы и другое оборудование.
В последнее время для повышения извлечения минералов из исходного сырья все чаще используется так называемый процесс оттирки, заключающийся в обработке коллективного концентрата растворами щелочи или слабой плавиковой кислоты при интенсивном перемешивании. При этом с поверхности минералов, в частности рутила и циркона, удаляются железистые и глинистые пленки, затрудняющие селекцию материалов.
Восстановительную плавку проводят
в трехэлектродных круглых
Шихту готовят из концентрата (–3 мм) и антрацита или газового угля (–0,5 мм), в которых золы не должно быть больше соответственно 10 и 4 %. После перемешивания со связующим – сульфит-целлюлозным щелоком в обогреваемом смесителе шихту брикетируют на валковых прессах. Брикеты теплопроводнее порошка и снижают вынос пыли, но изготовление их обходится дорого, поэтому иногда они составляют только часть загрузки, дополняемую порошком или окатышами.
Задача плавки – получить богатый титановый шлак и чугун, переход железа в который ограничивают: FeO единственное вещество, позволяющее получить умеренно вязкий шлак, при недостатке его потребовался бы излишний перегрев. Чтобы избежать разбавления шлака и лишних расходов, флюсы применяют редко. В отличие от цветной и черной металлургии здесь над чугуном получается сплав титанатов, а не силикатов. Титанаты железа более легкоплавки, чем окислы титана, особенно ильменит (1400 градусов) и Fe2TiO4 (1395 градусов), они в основном и снижают вязкость шлака.
Распределение железа и титана между чугуном и шлаком – функция разности сродства этих металлов к кислороду и зависит от парциального давления окиси углерода в порах шихты, определяемого расходом восстановителя и температурой.
В действительности равновесие не достигается из-за быстрого восстановления железа, накопления чугуна в начале передела и недостатка времени для последующего выравнивания состава фаз.
Плавку ведут периодически либо непрерывно, в первом случае в шлаках удается оставить всего 5% окиси железа, а во втором 8-15%; непрерывный передел производительнее и полнее автоматизирован.
Для увеличения проплава и снижения расхода энергии шихту предварительно подогревают в трубчатых печах, сжигая мазут или газ. При этом на 1т шлака суммарно затрачивают 1750 кВт*ч.
Процесс производства губчатого титана состоит из четырех основных переделов: подготовки сырья, конденсации продуктов, очистки губчатого титана и переработки отходов.
Подготовка сырья заключается в приготовлении брикетов из титансодержащего материала и кокса. Этот передел включает операции дробления, размола, смешения, брикетирования и прокалки брикетов.
Очистка технического губчатого титана. Здесь происходит уже окончательная очистка губчатого титана от растворенных в нем примесей.
Переработка отходов. Чем богаче материал по содержанию в нем титана, тем проще его перерабатывать путем хлорирования. Однако с повышением чистоты исходного сырья стоимость его возрастает. Поэтому для промышленного производства губчатого титана применение титансодержащих материалов высокой чистоты (например титана) экономически не всегда выгодно.
Титановые шлаки, получающиеся в результате руднотермической восстановительной плавки железо-титановых концентратов, дробят в щековой и конусной дробилках. После измельчения шлаки размалывают в шаровых мельницах. Размолотый шлак должен содержать фракций +0.1 мм не более 10% (по массе) и металлического железа менее 4%. После удаления с помощью магнитной сепарации металлического железа размолотый шлак поступает на хлорирование (при использовании солевых хлораторов или аппаратов кипящего слоя) или в отделение подготовки шихты (брикетирование, агломерация, окомкование) при использовании шахтных хлораторов с подвижным слоем.
Шахтная электропечь. На первом этапе развития титановой промышленности в качестве основного промышленного аппарата использовались шахтные электропечи (ШЭП) для производства магния. В титановом производстве их конструкция подвергалась значительным изменениям. Шахтная электоропечь состоит из двух зон – верхней и нижней. В верхнюю зону через свод печи загружают шихту; в нижнюю зону, оборудованную электродами, загружают угольную насадку и подают хлор. Шахтные электропечи незаменимы при использовании титаносодержащего сырья с компонентами, хлориды которых низколетучи (например, перовскиты, титаномагнетиты и др.). Шахтная электропечь сыграла важную роль создании и развитии отечественной титановой промышленности.
Хлоратор с подвижным слоем. В связи с появлением титаносодержащих шлаков с низким содержанием в них CaO и MgO шахтные электропечи вытеснены более совершенным аппаратом – хлоратором с подвижным слоем. Основное отличие его от ШЭП – отсутствие электрообогрева, сложной насадочной зоны и наличие в нижней его части герметичного разгрузочного устройства для непрерывного удаления непрохлорированного остатка.
Последнее обстоятельство позволяет коренным образом улучшить газодинамические параметры и резко интенсифицировать процесс, так как температурный режим в хлораторе и аппаратах конденсационной системы легко регулируется количеством подаваемого хлора, загрузкой брикетов и выгрузкой непрохлорированного остатка. Это в значительной степени упрощает процесс и облегчает его автоматизацию.
Уровень шихты
в хлораторе поддерживают в интервале
1.2-3.5 м. Для хлорирования применяют
брикеты или гранулы. Многочисленные
способы приготовления
Хлорирование гранул с сохраняющейся формой углеродистого брикета в фильтрующем (подвижном слое). Наиболее полно этот процесс описан Мак-Ферландом и Феттерролом и запатентован рядом авторов. Суть его заключается в том, что в шихту для хлорирования вводят двух-трехкратное количество углеродистого восстановителя и углесодержащего связующего по отношению к стехиометрически необходимому для связывания кислорода оксидов титананосодержащего сырья и хлоровоздушной смеси в расчете на образование оксида углерода CO.
Хлорирование в хлораторах с расплавом и аппаратах с кипящим слоем.
С переходом на сырье, содержащее значительное количество примесей, образующих низколетучие хлориды (лопариты, перовскиты, шлаки с высоким содержанием кальция), производительность указанных аппаратов резко падает. Поэтому и шахтные хлораторы наиболее эффективно можно использовать для хлорирования так называемых сухих титансодержащих материалов. Для хлорирования высококальциевого сырья, а так же других материалов, содержащих повышенные количества щелочноземельных элементов, выгоднее использовать хлоратор, в котором хлорирование осуществляется в жидкой ванне из расплавленных хлоридов щелочных и щелочноземельных металлов. Основные преимущества хлоратора с жидкой ванной перед другими аппаратами заключается в том, что конструкция его позволяет непрерывно выводить вместе с частью расплава непрохлорированный остаток и таким образом осуществлять практически непрерывный процесс. Кроме того, упрощается подготовка шихты: отпадает надобность в предварительном брикетировании материалов, так как в хлоратор можно загружать порошкообразную шихту.
Производство труб значительно отличается от остальных видов прокатного производства не только в форме готового изделия, но также и тем, что большая часть труб является продуктом вторичного передела проката основных видов — круглой и плоской заготовки.
При производстве сварных труб исходным материалом служит прокатная полоса — штрипс. Процесс изготовления труб в этом случае состоит из получения заготовки в виде свернутой полосы и последующей сварки шва. Шов можно выполнять встык и внахлестку.
Блок-схема производства труб сварных из титана и титановых сплавов
5. Нормативно-технические документы на трубы сварные из титана и титановых сплавов, нормируемые показатели качества в соответствии с требованиями нормативно-технической документации.
ГОСТ 24890 – 81 «Трубы сварные их титана и титановых сплавов. Технические условия»
ГОСТ 17746-79 «Титан губчатый. Технические условия»
ГОСТ 14192 — 77 «Металлопродукция. Транспортирование, хранение грузов»
ГОСТ 24890 – 81 «Трубы сварные их титана и титановых сплавов. Технические условия» распространяется на круглые сварные трубы из титана марок ВТ1—00, ВТ1—0 и титанового сплава марки ОТ4—0.
Наружный диаметр, толщина стенки и предельные отклонения по ним, а также теоретическая линейная плотность I м труб должны соответствовать указанным в табл. 5.1.