Технология производства отдельных видов проката

Автор работы: Пользователь скрыл имя, 16 Февраля 2015 в 13:58, реферат

Описание работы

Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях (рисунок 2.1). При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются.

Содержание работы

1 Сущность процесса прокатки
2 Устройство и классификация прокатных станов
2.1 Классификация станов по типу рабочих клетей
2.2 Классификация станов по назначению
3 Основы технологии прокатного производства
4 Технология производства отдельных видов проката
Заключение
Литература

Файлы: 1 файл

Обработка металлов давлением.docx

— 369.33 Кб (Скачать файл)

1 Сущность процесса прокатки

2 Устройство и классификация прокатных станов

2.1 Классификация станов по типу  рабочих клетей

2.2 Классификация станов по назначению

3 Основы технологии прокатного  производства

4 Технология производства отдельных видов проката

Заключение

Литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Прокатка металлов

2.1 Сущность процесса прокатки

 

Прокатный стан - это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению.

Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях (рисунок 2.1). При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются.

 

Рис. 1. Схема прокатки металла

 

Разность между исходной h0. и конечной h1, толщинами полосы называют абсолютным обжатием:

 

∆h= h0 – h1

 

Разность между конечной b1 и исходной b0 ширинами полосы называют абсолютным уширением

 

∆b = bt – b0.

 

Величину деформации полосы при прокатке характеризуют следующие показатели (коэффициенты):

относительное обжатие – отношение абсолютного обжатия к исходной толщине полосы;

 

ε = ∆h/h0, или ε = (∆h/h0)100 %;

 

коэффициент обжатия — отношение исходной толщины к конечной

 

ε = h0 / h1

 

коэффициент вытяжки — отношение длины полосы после прокатки l1 к исходной длине l0:

 

μ = l1 / l0

Поскольку объем металла в процессе прокатки не изменяется, то

 

h0b0l0 = h1b1l1,

отсюда

μ = l1 / l0 = h0b0/ h1 bt = F0 / F1

 

Таким образом, длина полосы при прокатке увеличивается пропорционально уменьшению ее поперечного сечения. Коэффициенты обжатия, вытяжки и уширения характеризуют высотную, продольную и поперечную деформацию металла.

Металл соприкасается с каждым из валков по дуге АВ (рис. 2.2 а), которую называют дугой захвата. Угол а, соответствующий этой дуге, называют углом захвата.

 

а         б

 

Рис. 2.2. Очаг деформации и угол захвата при прокатке

 

Объем металла, ограниченный дугами захвата АВ, боковыми гранями полосы и плоскостями входа АА металла в валки и выхода ВВ металла из них, называют очагом деформации металла.

Процесс прокатки металла обеспечивается трением, возникающим по контактным поверхностям валков с прокатываемой полосой. В момент захвата со стороны каждого валка на металл действуют две силы (рис. 2.2 б): нормальная (радиальная) сила N и касательная (тангенциальная) сила Т. Из механики известно, что при относительном движении двух тел сила трения равна нормальной силе, умноженной на коэффициент трения

 

T = Nf.

 

Отношение силы трения к нормальной силе равно тангенсу угла трения β

 

T/N=tg β =f

 

Для осуществления захвата металла валками необходимо, чтобы соблюдалось условие: f>tga, tg β >tga, β >a.

Максимально допустимый угол захвата при прокатке зависит от материала валков и прокатываемой полосы, состояния их поверхности, температуры и скорости прокатки. Обычно при прокатке блюмов и крупных заготовок максимальный угол захвата составляет 24...32°, при горячей прокатке листов и полос – 15. ..20°, при холодной прокатке листов и лент со смазкой – 2 ..10°.

При расчете на прочность валков и других деталей рабочей клети прокатного стана и при определении мощности двигателя стана необходимо знать усилие прокатки, которое определяют по формуле

 

P=pcPF,

 

где pcP – среднее давление прокатки; F – горизонтальная проекция контактной площади металла с валком.

При прокатке простых профилей (листов, полос и заготовок прямоугольного и квадратного сечений) контактная площадь определяется произведением средней ширины полосы в очаге деформации на длину очага деформации. При прокатке сложных профилей (уголков, швеллеров, балок, рельсов и т. п.) контактную площадь определяют графически или по приближенным формулам. Среднее давление прокатки рассчитывают по формулам или находят опытным путем.

 

2 Устройство и классификация прокатных станов

 

Главная линия прокатного стана состоит из следующих основных узлов: рабочей клети 1, шпинделей 2, шестеренной клети 3, коренной муфты 4, редуктора 5, моторной стеренной клети 3, коренной муфты 4, редуктора 5, моторной муфты 6, электродвигателя 7. В рабочей клети осуществляется прокатка металла. Она состоит (рис.2.3) из двух станин 1, предназначенных для установки в них валков 2 и для восприятия усилия прокатки, передаваемого через опоры шеек. Станины в верхней части соединяются траверсой 3. Прокатные валки 2 укреплены в подушках с подшипниками качения 5. Механизм 4 для установки верхнего валка расположен в верхней части станин.

Прокатные валки обжимают металл и придают ему требуемую форму. Прокатный валок (рис. 21.6) состоит из бочки 3 (гладкой или с ручьями 4), шеек 2, расположенных с обеих сторон бочки и опирающихся на подшипник валка, трефов 1, предназначенных для соединения валка со шпинделем. Валки изготовляют из чугуна и стали. Мягкие чугунные валки применяют при черновой горячей прокатке стали. На блюмингах, слябингах, обжимных клетях сортовых станов и на станах холодной прокатки листов применяют литые или кованые стальные валки. Кованые валки несколько прочнее литых, но дороже в 1,5. ..2 раза, поэтому их применяют реже. Для листовых станов применяют валки из легированной стали (хромоникелевой и хромомолибденовой).

 

Рис. 2.3. Прокатный валок и его элементы

 

Для прокатных станов применяют двигатели постоянно или переменного тока (асинхронные и синхронные). Так как частота вращения быстроходных двигателей обычно не соответствует частоте вращения валков в прокатных клетях, между двигателями и клетями устанавливают редукторы. В прокатим клетях вращающий момент двигателя необходимо распредели между несколькими валками. Для этого применяют шестеренные клети. Крутящий момент от двигателя к валкам передается при помощи шпинделей и муфт.

 

2.1 Классификация станов по типу рабочих клетей

 

В зависимости от числа и расположения валков в клети стан разделяют на двухвалковые, трехвалковые, четырехвалковые многовалковые, универсальные.

Станы двухвалковые имеют рабочие клети (рис. 2.4, а) с двумя валками с постоянным направлением вращения. Полоса между валками проходит один раз. Реверсивные двухвалковые станы имеют переменное направление вращения валков для прохождения металла между валками несколько раз (блюминги, слябинги).

Станы трехвалковые имеют в рабочей клети три прокатных палка с постоянным направлением вращения, расположенных и одной вертикальной плоскости (рис. 2.4,6). Для задачи прокатываемой полосы между верхним и средним валками служат подъемно-качающиеся столы, установленные с одной или обеих сторон клети. К этому типу станов относят сортовые линейные станы.

Станы четырехвалковые (рис 2.4 в) имеют в рабочей клети четыре валка в одной вертикальной плоскости. Два валка меньшего диаметра являются рабочими, два валка большего диаметра являются опорными. Эти станы применяют при горячей и холодной прокатке листовой и полосовой стали.

Многовалковые станы (шести-, двенадцати- и двадцативалковые) (рис 2.4 г) широко применяют в последние годы. Благодаря малому диаметру валков (10…30 мм) и большой жесткости рабочей клети позволяют катать тончайшую ленту. Рабочие валки этих станов бесприводные, они опираются на ряд приводных валков, которые в свою очередь опираются на ряд опорных валков. Такая схема обеспечивает практически полное отсутствие прогиба рабочих валков.

 

 

Рис. 2.4 Схемы прокатных станов

 

Универсальные станы (рис. 2.4, д) применяют при прокатке широкополосовой стали, листов и слябов. Металл в универсальных станах обжимается горизонтальными и вертикальными валками; последние обеспечивают получение ровных и гладких кромок проката. Универсальные балочные станы применяют при прокатке балок высотой до 1000 мм (рис. 2.4, е). Вертикальные валки рабочих клетей этих станов являются неприводными и располагаются между опорами подшипников горизонтальных валков в одной плоскости с ними.

Станы разделяют на обжимные, заготовочные, сортовые, полосовые, листовые, трубопрокатные и станы специального назначения.

 

3 Основы технологии прокатного производства

 

Сортамент проката

Прокат можно разделить на пять основных групп: 1) заготовки всех видов, 2) сортовая сталь, 3) листовая сталь, 4) специальные виды проката, 5) трубы.

Заготовки всех видов или полупродукт включают блюмы, слябы, заготовки передельные, осевые, трубные, кузнечные и другие. Они являются исходным материалом для последующей прокатки сортовых, листовых профилей, специальных видов проката и бесшовных труб.

Сортовую сталь (рис. 2.5), в свою очередь, можно разделить на профили массового потребления и профили специального назначения. К первой группе профилей относят круглую квадратную, .шестигранную, полосовую и угловую сталь, проволоку, швеллеры, двутавровые балки и др. Ко второй группе рельсы, профили особой формы, применяемые в строительств (шпунтовые сваи и др.), машиностроении (автообод, кольцо автообода, опорная планка направляющего ножа трактора др.) и других отраслях народного хозяйства.

Листовая сталь в зависимости от толщины листов разделяется на две основные группы: толстолистовую — толщина 4. ..160 мм, тонколистовую — толщиной 1,2. ..4 мм.

 

 

Рис. 22.1. Профили сортовой стали

1 — квадратный; 2 — круглый; 3 — шестигранный; 4 — полосовой; 5—автообод; 6 — угловой (а — равнобокий, б — нерав-нобокий); 7 — рельс железнодорожный; 8 — рельс трамвайный; 9 — балочный; 10 — швеллерный; 11 — опорная планка направляющего колеса трактора; 12 — зетовый профиль; 13 — шпунт

 

К специальным видам проката относят бандажи, шар цельнокатаные колеса и периодические профили (переменно поперечное сечение по длине полосы).

Стальные трубы разделяют на бесшовные и сварные. Доля стальных труб в общем выпуске проката с каждым годом увеличивается, особенно быстро растет производство сварных труб.

Размеры и допуски на прокат, требования к качеству поверхности, механическим и технологическим свойствам определяются государственными и отраслевыми стандартами (ГОСТами, ОСТами) или техническими условиями (ТУ).

Основные технологические операции прокатного производства

Технологический процесс прокатки представляет собой комплекс последовательных термомеханических операций, выполняемых на соответствующем оборудовании и в определенной последовательности и предназначенных для получения продукции с заданными показателями качества (точности формы и геометрических размеров, состояния поверхности и т. д.). Наиболее общая схема технологического процесса прокатки включает операции подготовки исходного металла к прокатке, нагрева перед обработкой давлением, собственно прокатки для получения заданного профиля, отделку проката и контроль его качества. В зависимости от стадии прокатки (производство заготовок или готовой продукции из слитка или литой заготовки) и вида проката число технологических операций и их последовательность может изменяться.

 

 

Литература

 

  1. Ю.М. Лахтин, В.П. Леонтьева. Материаловедение. М.:²Машиностроение², 1990

1. Геллер Ю.А. Рахштадт А.Г. Материаловедение. Методы анализа, лабораторные работы и задачи. М.: Металлургия, 1984г.

2. Бернштейн М.Л.. Металловедение  и термическая обработка стали.М.: Металлургия, 1983

3.Богодухова С.И., Бондаренко  В.А. Технологические процессы машиностроительного  производства. Оренбург, ОГУ, 1996

4.Жадан В.Т., Полухин П.И. Материаловедение и технология материалов. М.: Металлургия, 1994

5. Лахтин Ю.М, В.П. Леонтьева. Материаловедение. М.: Машиностроение, 1990   ПРОКАТ

 

 

 

  1. Волочение металла

 

Волочением называется способ обработки металла давлением, при котором обрабатываемый металл в виде полосы с одинаковым поперечным сечением вводится в канал волочильного инструмента и протягивается  (проволакивается) через него. Этот канал имеет поперечные сечения, одинаковые по своей форме или близкие к форме поперечного сечения протягиваемого  металла, но  плавно уменьшающиеся от места входа металла в инструмент к месту его выхода. Выходное сечение канала всегда меньше поперечного сечения протягиваемой полосы. Поэтому последняя, проходя через волоку, деформируется и изменяет свое поперечное сечение, принимая после выхода из волоки форму и размеры наименьшего сечения  канала. Длина полосы при этом увеличивается  прямо пропорционально уменьшению поперечного сечения. Перед волочением на специальном станке заостряют передний конец полосы, предназначенной для обработки, с таким расчетом, чтобы конец легко входил в волоку и частично выходил с ее противоположной стороны. Этот конец захватывают специальным механизмом   и протягивают.

Схемы основных методов волочения показаны на рисунке 3.1. Чтобы уменьшить внешнее трение, между поверхностями протягиваемого металла и волочильного канала вводят смазку. Это уменьшает расход энергии на волочение, способствует получению гладкой поверхности у протягиваемого металла, сильно уменьшает износ самого канала и позволяет осуществлять процесс с повышенными степенями деформации.

 


 

Рис 3.1 Схемы методов волочения: а – круглого профиля; б – фасонного сплошного профиля; в – круглой трубы без утонения стенки; г – круглой трубы с утонением стенки.


 

Для уменьшения внешнего трения и повышения стойкости канала часто применяют метод волочения с противонатяжением (рисунок 3.2). Сущность его заключается в следующем. К протягиваемому металлу со стороны входа его в волоку прикладывают силу, направленную в сторону, противоположную движению металла, и потому называемую противонатяжением. От этого в полосе еще до ее входа в волочильный канал в осевом направлении создаются растягивающие напряжения. Они вызывают, как это будет доказано далее, уменьшение давления металла на стенки канала, что, естественно, увеличивает стойкость последнего. Этот метод имеет и некоторые недостатки, отмеченные далее, и потому не всегда применятся.

Информация о работе Технология производства отдельных видов проката