Автор работы: Пользователь скрыл имя, 20 Октября 2013 в 22:10, курсовая работа
Циркониевый электрокорунд будем рассматривать как продукт кристаллизации двойной системы. В этой системе, по данным Г. Вартерберга, при массовой доле ZrO2, равной примерно 40 %, появляется эвтектика с температурой плавления 2193 К. Р.Ф. Геллер определил наличие эвтектического сплава при массовой доле в нем ZrO7, равной 55 %, с температурой плавления 2158 К. Поданным японских исследователей температура плавления эвтектики составляет 2163 К. А.С. Бережной, исследуя систему А17О3—ZrO^, построил расчетную диаграмму состояния (рис. 2.42), согласно которой массовая доля ZrO2 в эвтектическом сплаве составляет 32 %, а температура его плавления 2183 К.
Введение
Циркониевый электрокорунд
Сырьевые материалы в производстве циркониевого электрокорунда
Свойства циркониевого электрокорунда
Микроструктура циркониевого электрокорунда
Фазовые равновесия в электрокорунде системы А12О3-ZrO2
Заключение
Список литературы
Содержание
Введение
Циркониевый электрокорунд
Сырьевые материалы в производстве циркониевого электрокорунда
Свойства циркониевого электрокорунда
Микроструктура циркониевого электрокорунда
Фазовые равновесия в электрокорунде системы А12О3-ZrO2
Заключение
Список литературы
Введение
В курсовой работе будет рассмотрен технологический процесс плавки циркониевого электрокорунда, особенности его структуры, физических и химических свойств, а также их изменение от скорости охлаждения расплава.
Циркониевый электрокорунд
Циркониевый электрокорунд
будем рассматривать как
Характерной чертой
системы А12О3—ZrO2, содержащей 20—25 % ZrO7,
является присущая корунду высокая
твердость в сочетании с
при получении циркониевого электрокорунда, применяемого для силового шлифования, где роль прочности, ударной вязкости и трещиностойкости абразивного зерна для его эксплуатационных характеристик существенно возрастает. В зависимости от условий кристаллизации существенно изменяются свойства циркониевого корунда (табл. 1). Изменение прочностных показателей зерен циркониевого электрокорунда связано с дефектами его микроструктуры, определяемой наличием микротрещин между корундом и баделеитом, обусловленных различием коэффициентов термического расширения этих минералов и возможными модификационными переходами диоксида циркония. С уменьшением размеров кристаллов циркониевого электрокорунда возрастает их сопротивляемость разрушению. Например, уменьшение кристаллов, образующих эвтектические участки со 150 до 30 мкм, увеличивает сопротивление разрушению зерен крупностью 125 мкм более чем в два раза.
Таблица 1
Некоторые свойства зерен циркониевого электрокорунда в зависимости от скорости охлаждения расплава (по данным ВНИИАШа)
Скорость охлаждения, ◦С/мин |
Прочность единичного зерна № 125, Н/зерно |
Прочность совокупности зерен, % |
Насыпная масса, кг/м3 |
Износостойкость, мин/мм |
8 16 60 170 2000 |
163 197 249 287 351 |
66,0 79,3 83,1 87,0 87,0 |
1910 1930 1990 1970 2030 |
412 470 535 614 1200 |
Размер кристаллов циркониевого электрокорунда зависит от условий охлаждения расплава. Так, по данным ВНИИАШа, с увеличением скорости охлаждения расплава от 12—20 до 1000— 2000 °С/мин размер первичных кристаллов уменьшается с 300—400 до 30—10 мкм и растет число участков эвтектического строения. Скорость охлаждения расплава можно изменять, разливая его в металлическую изложницу, аналогичную изложнице такой же емкости, но с металлическими шарами, ускоряющими охлаждение расплава, и на валках-кристаллизаторах. В последнем случае расплав из печи поступает в зону формирования ленты, образуемую усилием прижима двух охлаждаемых валков (рис. 2.43), вращающихся навстречу друг другу. На поверхности каждого из вращающихся валков / и 2 образуются твердые "корочки" расплава, которые, встречаясь в точке А (см. рис. 1), сливаются (свариваются) в одну общую "корочку" — твердую полосу циркониевого электрокорунда. Температура расплава в печи при этом составляет 2323— 2373 К, в струе — 2173—2253 К, а в зоне формирования полосы 4 в клине расплава 3 между валками — 2123—2163 К. Оптимальная скорость формирования электрокорундовой полосы в этих условиях составляет 0,17 м/с, а ее толщина— 2,5— 3,5 мм. Выход крупного шлифзерна (размер частиц 2—1 мм) из такой полосы составляет 65,3 %, а насыпная масса его изменяется в пределах 2010—1920 кг/м3. Сравнительная характеристика химического состава и некоторых свойств зерен циркониевого электрокорунда отечественного производства, полученного из различных шихтовых материалов и охлажденного в валках-кристаллизаторах, по сравнению с зарубежными аналогами приведена в табл. 2.
Анализ данных табл. 2,а. показывает, что используя различного состава шихты, можно получать материалы с высокими физико-механическими свойствами. При этом зарубежные аналоги, несмотря на более низкое содержание в них ZiO2, отличаются более высокими значениями насыпной массы, что, по-видимому, можно объяснить различием в технологии получения зерна. Особенность зарубежной технологии заключается в том, что кристаллизация циркониевого электрокорунда осуществляется в формах с добавлением в них в ходе слива расплава металлических шаров или кусков
циркониевого электрокорунда
предыдущих плавок, ускоряющих процесс
охлаждения расплава. После этого
измельчение материала
Недостатком способа кристаллизации циркониевого электрокорунда в валках-кристаллизаторах является малая их удельная производительность и низкая стойкость.
Таблица 2,а
Сравнительная характеристика зерна циркониевого электрокорунда, полученного из различных шихтовых материалов в валках-кристаллизаторах.
Технологический процесс промышленной плавки циркониевого электрокорунда аналогичен плавке белого и легированного электрокорунда способом "на выпуск" и производится в таких же электрических трехфазных дуговых печах. При этом в качестве глиноземсодержащего сырья используют шлифматериалы белого и нормального электрокорундов, взятых, как правило, из избыточных номеров зернистостей, находящих ограниченное применение в производстве абразивного инструмента. В качестве второго компонента применяют диоксид циркония, содержащий порядка 98 % ZrO2 или циркониевый концентрат. Для получения мелкокристаллической структуры циркониевого корунда в России и за рубежом выпуск расплава корунда производят в изложницу, 50 % объема которой заполняется
стальными шарами,
или применяют специальные
Технологическая схема процесса производства бокситового агломерата для выплавки циркониевого электрокорунда
Сырьевые материалы в производстве циркониевого электрокорунда.
Сырьём для производства циркониевого электрокорунда служит глинозём, получаемый из бокситов, каолинов, нефелинов, содержащих оксид алюминия, получаемый щелочным или кислотным методом. Химический состав глинозёмов, получаемых на отечественных заводах, представлен в табл.2,б.
Таблица 2,б.
Химический состав глинозёмов полученных на различных заводах России.
Завод-изготовитель |
Химический состав глинозёма, % | |||||
CaO |
Si |
п.п.п. | ||||
Уральский алюминиевый |
98,2 |
0,20 |
0,08 |
0,08 |
0,76 |
0,37 |
Богословский глиноземный |
98,4 |
0,03 |
0,06 |
0,04 |
0,30 |
1,22 |
Бокситогорский глиноземный |
99,6 |
0,03 |
0,05 |
0,01 |
0,22 |
- |
Свойства циркониевого электрокорунда
При формировании микроструктуры фаз циркониевого электрокорунда, как и других электроплавленых оксидных материалов, важное значение имеют скорость разливки сплава и последующие условия охлаждения. Так, непрерывнолитые заготовки, полученные на валках-кристаллизаторах, имеют улучшенную микроструктуру и обеспечивают более высокое качество абразивного зерна (изделий). В опытах расплав циркониевого электрокорунда на основе технического глинозема и нормального электрокорунда разливали со скоростью формирования слитка-ленты 0,16 м/с. Ввиду хрупкости слиток, попадая в приемный короб, разламывался на куски различных размеров. Раздельное охлаждение кусков на воздухе позволяло иметь более высокую скорость снижения температуры по сравнению с охлаждением кусков в стопке в коробе. Исследования показали, что минералогический (фазовый) состав и разрушаемость фракции < 1600 и < 1250 мкм шлифзерна циркониевого электрокорунда зависят от применяемого в шихте глинозем содержащего материала (технического глинозема или нормального электрокорунда), количества фазы ZrO2T и условий охлаждения слитка-ленты. Разрушаемость шлифзерна X определяли по выражению, % Х = (1—G/P) 100, где G — масса остатка шлифзерна после испытания и рассева на сите с размером стороны ячейки 1000 мкм; Р — масса исходной навески шлифзерна (100 г).
Таблица 3
Химический и фазовый состав циркониевого электрокорунда и разрушаемость шлифзерна.
В табл.3 приведены данные, характеризующие изменение фазового состава циркониевого электрокорунда, полученного на основе технического глинозема (плавка А), нормального электрокорунда без присадки алюминия (плавка Б) и с присадкой алюминия (плавка В). Количество а-А12О3 и эвтектики относятся к случаю охлаждения кусков слитка-ленты каждой плавки в стопке, а количество фазы ZrO2T для обоих случаев — для охлаждения в стопке и в виде отдельных кусков на воздухе. К сожалению, авторы не привели полный фазовый состав сплавов с указанием количества сопутствующих фаз, как-то: Na2O-11А12О3 (для плавки А), СаО-6А12О3, анортита, титановых минералов и др. (для плавок Б и В).
Из данных табл.3 следует, что присадка 0,3% Al в расплав (плавка В) повышает количество фазы ZrO2T с 14% (плавка Б, без присадки А1) до 20% в слитках, охлажденные в стопке. Авторы связывают это только с присадкой алюминия
По-видимому, следует учитывать также и тот факт, что в плавке В более высокая концентрация оксидов титана (2,0 против 1,4% в плавке Б) в пересчете на TiO2, что приводит также к большему выходу стабилизированной фазы ZrO2T. С этим, очевидно, связано и большее количество фазы ZrO2T в плавке Б (14,9%) в сравнении с плавкой А (12,0%) на основе технического глинозема, в которой оксиды титана отсутствовали. Это подтверждается данными табл. 9.1, в которой приведены связь количества ZrO2T от добавок ТiO2, поэтому большее количество фазы ZrO2T в сплаве плавки В (2,0 % TiO2) в сравнении со сплавами плавок Б (1,6% TiO2) и А (ТiO2 отсутствует), очевидно, связано не только с присадками в расплав алюминия, но и наибольшим для данной серии плавок содержанием оксидов титана. В связи с этим при выборе оптимального содержания стабилизирующей добавки необходимо учитывать концентрации других оксидов, присутствующих в расплаве циркониевого электрокорунда. Предметом дальнейших исследований должно быть установление функциональной связи количества ZrO2T в слитках от полного химического состава электрокорунда, поскольку разрушаемость, хрупкость зерна тем ниже, чем выше (в изученных пределах) содержание тригональной модификации диоксида циркония (фазы ZrO2T).
Микроструктура циркониевого электрокорунда
Микроструктура
циркониевого электрокорунда в существенной
мере зависит от условий охлаждения
расплава. Первичные кристаллы корунда,
как правило, имеют вытянутую
форму в направлении
Рис. 3. Микроструктура циркониевого электрокорунда (массовая доля ZrO2 составляет 20—25 %) при различных скоростях охлаждения (х250):
а— 12-20 °С/ммн; б— 80-130 °С/мин; • — 1000 "С/мин;
г— циркониевый электрокорунд фирмы "Нортон" (х500)
Максимальное содержание эвтектики характерно для слитка толщиной 100 мм. В слитках толщиной 60 и 25 мм в их наружных зонах "эвтектика" отсутствует, а на стыках корундовых кристаллов кристаллизуется практически только баделеит. Наружные зоны слитков содержат значительное количество округлой формы пор, число которых возрастает по мере роста толщины слитка. Вокруг этих пор обычно наблюдается кристаллизация "эвтектики". При введении в ходе плавки циркониевого электрокорунда добавки SiO9 в готовом продукте наблюдается стекло, содержание которого растет по мере
Рис. 5. Микроструктура
центральных зон слитков
а — 200 мм (скорость охлаждения 10 С/мин); 6- 100 мм (20 С/мин); в — 60 мм (60 С/мин); г— 25 мм (170 °С/мнн); /-— корунд; 2— баделеит, 3— корундбаделеитовая "эвтектика*1 (свет отраженный х200)
Рис. 6. Микроструктура циркониевого электрокорунда
в слитках толщиной 25 мм (свет отраженный; х200) {а— краевая зона; б— центр) и 60 мм (в— краевая зона; г— центр):
Фазовые равновесия в электрокорунде системы А12О3 —ZrO2
Электроплавленый продукт состава 70 % А12О3—30 % ZrO2 является исходным материалом для получения абразивного инструмента. Силовое обдирочное шлифование этим абразивом ведется при высоких скоростях резания (от 60 до 80 м/с) и больших радиальных усилиях прижатия абразивного круга к обрабатываемой поверхности (5—10 кН), что обеспечивает производительность сошлифования до 250 кг стали/ч и 400 кг чугуна/ч. Абразивный круг (шлифзерно) подвергается высоким термическим нагрузкам. Температура в зоне резания достигает температур плавления обрабатываемых стальных и чугунных деталей. Изготовление абразивных кругов также связано с их обжигом при высоких температурах, поэтому необходимо учитывать полиморфные превращения оксида циркония и других фаз, которые могут оказывать влияние на качество абразивного инструмента.