Контрольная работа по "Строительные материалы"

Автор работы: Пользователь скрыл имя, 16 Октября 2013 в 11:49, контрольная работа

Описание работы

1. Гидрофизические свойства строительных материалов: гидрофильность и гидрофобность, гигроскопичность, капиллярное всасывание, водопоглощение, газо- и паропроницаемость, водостойкость, морозостойкость, влажностные деформации.
2. Коррозия цементного камня: виды, причины возникновения, способы борьбы.

Файлы: 1 файл

Строймат_Алексеенко_К.docx

— 86.32 Кб (Скачать файл)

Контрольная работа №1

Вариант 1

1. Гидрофизические свойства строительных материалов: гидрофильность и гидрофобность, гигроскопичность, капиллярное всасывание, водопоглощение, газо- и паропроницаемость, водостойкость, морозостойкость, влажностные деформации.

Строительные материалы в процессе их эксплуатации и хранения подвергаются действию воды или водяных паров, находящихся в воздухе. При этом их свойства существенно изменяются. Так, при увлажнении материала повышается его теплопроводность, изменяются средняя плотность, прочность и другие свойства. Поэтому при всех расчётах необходимо учитывать как влажность материала, так и его способность к поглощению влаги (водопоглощение и гигроскопичность). Во всех случаях при применении и хранении пористые строительные материалы предохраняют от увлажнения.

Гидрофильность и гидрофобность — свойства поверхности материала по отношению к воде. Мерой гидрофильности служит энергия связи молекул воды с поверхностью вещества, из которого состоит материал.

Гидрофильные материалы имеют высокую степень связи с водой. На гидрофильной поверхности капля воды растекается, а капиллярные поры гидрофильных веществ способны втягивать воду и поднимать её на значительную высоту.

Гидрофобные материалы имеют низкую степень связи с водой. На их поверхности капли воды почти не растекаются, а в капиллярные поры вода проникает на минимальную глубину или вообще не проникает.

Для снижения смачиваемости материала и поглощения им воды можно изменять характер его поверхности. Убедительный пример этого — оперение водоплавающих птиц. Смазанное жиром, оно абсолютно не намокает в воде.

Особенно эффективны в роли гидрофобизаторов кремнийорганические вещества. Так, кирпич или бетон, обработанные гидрофобизирующей кремнийорганической жидкостью (ГКЖ), перестают поглощать воду, и более того, вода скатывается с поверхности таких гидрофобизированных материалов «как с гуся вода».

Гигроскопичность - способность материала изменять свою влажность при изменении влажности воздуха. При увеличении влажности воздуха гигроскопичный материал поглощает и конденсирует водяной пар на своей поверхности, в том числе и на поверхности пор. Этот процесс называют сорбцией.

Капиллярное всасывание – свойство пористо-капиллярных материалов поднимать воду по капиллярам. Оно вызывается силами поверхностного натяжения, возникающими на границе раздела твёрдой и жидкой фаз. Капиллярное всасывание характеризуют высотой поднятия уровня воды в капиллярных материалах и количеством поглощённой воды и интенсивность всасывания. Когда фундамент находится во влажном грунте, грунтовые воды могут подниматься по капиллярам и увлажнять низ стены здания. Во избежание сырости в помещении устраивают слой гидроизоляции, отделяющий фундамент от стены. С увеличением капиллярного всасывания снижается прочность, стойкость к химической коррозии и морозостойкость строительных материалов.

Водопоглощение - интегральный показатель способности материала поглощать влагу и удерживать её в своих порах.

Паропроницаемость и газопроницаемость - способность материала пропускать через свою толщу водяной пар или газы (воздух).

Водостойкость – способность материала сохранять прочность при насыщении водой.

Морозостойкость - способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения.

Влажностные деформации – изменение размеров и объёма материала при изменении его влажности. Уменьшение размеров и объёма материала при его высыхании называют усадкой (усушкой), а увеличение размеров и объёма при увлажнении вплоть до полного насыщения материала водой – набуханием (разбуханием). Усадка возникает и увеличивается в результате уменьшения толщины слоёв воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала. Набухание связано с тем, что полярные молекулы воды, проникая между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки, вокруг частиц исчезают внутренние мениски, а с ними и капиллярные силы. Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (древесина поперёк волокон 30...100 мм/м; ячеистый бетон 1...3 мм/м; кирпич керамический 0,03...0,1 мм/м; тяжелый бетон 0,3...0,7 мм/м; гранит 0,02...0,06 мм/м).

2. Коррозия цементного камня: виды, причины возникновения, способы борьбы.

Изделия из цемента и бетона, как из всякого другого материала, со временем в условиях своей службы подвергаются разрушению (коррозии). Проблема стойкости (неразрушаемости) бетонных сооружений важна в такой же степени, как и само их создание.

Под коррозией понимается разрушение цементного или бетонного изделия в результате действия на него физических либо химических факторов как извне (внешние причины коррозии), так и изнутри (внутренние причины коррозии).

Различают физическую, химическую, электрохимическую и биологическую коррозии.

Физическая коррозия

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород. Коррозии растворения носит физико-химический характер.

Химическая коррозия

Агрессивными по отношению к цементному камню являются все кислоты и многие соли. Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести ещё не исключает коррозии, поскольку она может восстанавливаться за счёт отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным изменением объёма. Иногда это всё происходит одновременно.

Коррозия выщелачивания

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2. Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.

Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок.

Таким образом, более стойкими против коррозии выщелачивания являются низкоосновные цементы (пуццолановые, шлакопесчанистые, БКЗ, известковокремнеземистые).

Магнезиальная коррозия

Если в окружающей цементный камень среде содержатся вещества, образующие с Са(ОН)2 малорастворимые соединения, то концентрация извести в ней будет поддерживаться на очень низком уровне.

Mg(ОН)2 и гипс имеют очень низкую растворимость в воде. Mg(ОН)2 сам по себе представляет рыхлое аморфное вещество. Если подобный процесс будет продолжаться, цементный камень разрушится. Подобное действие, но более слабое, оказывает и хлористый магний.

Стойкость вяжущего к этому виду коррозии понижается при введении активных минеральных добавок. Отсюда в таких средах нельзя применять облегчённые цементные растворы с минеральными добавками типа диатомит, опока, тремел, пемза.

Углекислотная коррозия

В пластовых водах, как правило, присутствует то, или иное количество углекислого газа. Он действует разрушающе, поскольку понижает содержание Са(ОН)2 окисляя её сначала до СаСО3, которая мало растворима, что будет вызывать понижение основности гидратов цемента. При поступлении новых порций СО2, СаСО3 окисляется до бикарбоната [Са (НСО3)2], который хорошо растворим. При незначительной концентрации Са2 в водах процесс может затухнуть. Однако если кислота содержится в пластовом газе, то вследствие большой проницающей способности, диффузии и осмоса возможно быстрое разрушение камня. Если процесс ограничивается до СаСО3, то низкоосновные, если до Са(НСО3)2, то высокоосновные.

Сульфатная коррозия

Это вид коррозии, который связан с образованием соединений кристаллизующихся с увеличением объёма. Примером такой коррозии являются взаимодействие с сульфатами кальция и натрия. Известно, что гидроалюминаты кальция могут присоединять гипс и образовывать гидросульфоалюминат. Последний кристаллизуется с увеличением объёма, что вызывает внутренние напряжения и разрушение цементного камня.

Однако не всегда наличие гидросульфоалюмината кальция в цементном камне говорит о сульфатной коррозии. Это вещество имеется в первичной структуре цементного камня. Только увеличение количества гидросульфоалюмината говорит о происходящей сульфоалюминатной коррозии.

Сероводородная коррозия

Это один из распространённых на нефтяных и газовых месторождениях видов коррозии. При сероводородной коррозии наблюдается образование малорастворимых сульфидов кальция, алюминия и железа. Это приводит к понижению равновесной концентрации Са(ОН)2, Al(OH)3, Fe(OH)3, что в свою очередь вызывает разрушение гидратов кальция.

Наиболее энергично образуется сульфид железа, поэтому для повышения стойкости против сероводородной коррозии следует ограничивать в цементах содержание окислов железа, марганца и других тяжёлых металлов. По отношению к цементному камню безвредны силикаты, карбонаты, щёлочи и их соли. Однако сильные щёлочи действуют на алюминаты.

Нефть и нефтепродукты не опасны, но если в них есть нафтеновые кислоты и сульфаты, то они также разрушают цементный камень.

Биологическая коррозия

Этот вид коррозии изучен мало. Однако видимо сводится в конечном итоге к какому-либо химическому виду.

Имеется много бактерий, которые выделяют углекислоту, что повлечёт углекислотную коррозию. Некоторые бактерии могут окислять сульфаты сначала до сероводорода, а затем до серной кислоты. Отсюда и характер разрушения камня.

Электрохимическая и электроосмотическая коррозии

Источник – блуждающие токи (промышленные сети). Система обсадная колонна, цементный камень – земля являются проводниками. В этой системе всегда возможен перенос ионов, отсюда возможны и электрохимическая и электроосмотическая коррозии. Следует отметить, что цементные камни, бетоны обладают, как правило, определённым электрическим потенциалом по отношению к земле.

В.М. Москвин разделяет коррозию бетона на три вида. К первому виду коррозии он относит процессы, происходящие в бетоне под воздействием вод с малой временной жёсткостью (мягких вод), в результате действия которых составные части цементного камня растворяются и уносятся сквозь толщу бетона при фильтрации. Ко второму виду коррозии отнесены реакции обмена между составляющими воды и бетона с образованием растворимых или не обладающих вяжущими свойствами продуктов, ослабляющих структуру камня. К третьему виду — накопление и кристаллизация в трещинах, порах и капиллярах бетона солей, которые также способны разрушить материал (солевая коррозия).

Причины возникновения коррозии

В условиях эксплуатации на цементный камень действуют: природные воды (речные и морские) под давлением или просто омывающие сооружения; промышленные и бытовые воды (стоки); периодически и многократно повторяющиеся теплосмены (сезонные и дневные колебания температур); процессы увлажнения и высыхания (колебания атмосферной влажности, специфические условия службы). Кроме того, влияют механические воздействия – удары волн, выветривание, истирание, а также биологические – вредные воздействия бактерий. Всё это внешние причины коррозии и разрушения цементного камня.

К разрушению цементного камня (бетона) приводят и внутренние факторы – его высокая водопроницаемость, взаимодействие щелочей цемента с кремнезёмом заполнителя, изменение объёма из-за различия температурного расширения цемента и заполнителя.

Способы борьбы с коррозией

Защита бетона и других материалов от коррозии вызывает большие расходы. Например, при строительстве химических заводов на антикоррозионную защиту зданий и аппаратов расходуется около 10...15% от общей стоимости строительства. Поэтому при строительстве зданий и сооружений необходимо, прежде всего, определить характер возможного действия среды на бетон, а затем разработать и осуществить нужные меры для предотвращения коррозии, которые в общем виде сводятся к следующему: 1) правильный выбор цемента; 2) изготовление особо плотного бетона; 3) применение защитных покрытий.

Одним из методов борьбы с сульфатной коррозией является понижение содержания трёхкальциевого алюмината (не более 5%). При этом содержание плавней компенсируется за счёт увеличения содержания окиси железа.

Наличие в пластовых водах хлоридов уменьшает отрицательное влияние сульфатов.

Защита строительных конструкций от биоповреждений предполагает проведение следующих мероприятий:

1. Эксплуатационно-профилактические:

- усиление вентиляции в целях понижения влажности воздуха и концентрации газов, способствующих развитию опасных микроорганизмов;

- герметизация с той же целью технологического оборудования;

- периодическая очистка и дезинфекция поверхности конструкций;

- нейтрализация агрессивных сред.

2. Конструктивные:

- придание поверхности конструкций формы, исключающей накопление на ней органических веществ, могущих служить пищей для микроорганизмов;

- устройство уклонов полов и отводящих лотков для сточных жидкостей.

3. Строительно-технологические:

Информация о работе Контрольная работа по "Строительные материалы"