Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 02:13, реферат
В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.
Введение 3
1. Историческая справка 4
2. Классификация 7
3. Сырьевые материалы 9
4. Основные технологические процессы и оборудование 10
5. Основные свойства продукции 14
6. Технико-экономические показатели 19
Заключение 21
Список использованной литературы 22
Министерство образования и науки РФ
Казанский государственный архитектурно – строительный университет
Кафедра строительных материалов
РЕФЕРАТ
МЕТАЛЛЫ В СТРОИТЕЛЬСТВЕ, МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ
Выполнил: студент гр № 11-404
Хайруллина Г.
Проверил: к.т.н. доцент
Халиуллин М.И.
Казань, 2011 г.
Оглавление
Металлы – наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях народного хозяйства.
В технологии металлов изучаются свойства металлов, а также практика и теория их получения и обработки. Составными частями технологии металлов являются: металлургия, металлография, термическая обработка металлов, химико-термическая обработка, литейное производство, обработка металлов давлением, сварочное производство, обработка металлов резанием и электрическая обработка металлов.
В процессе развития перечисленных отраслей производства, в результате накопившихся опыта, знаний и их обобщения, а также развития смежных наук (физики, химии и др.), каждая из этих отраслей явилась предметом специальной науки под тем же названием.
Так, например, металлургия — наука, изучающая способы получения металлов и сплавов. Термическая обработка — наука об изменении механических и физических свойств вследствие нагревания и охлаждения сплавов и т. д.
Самостоятельной наукой является металлография, изучающая структуру (строение) металлов и зависимость их свойств от структуры.
В своем реферате я хочу раскрыть темы, как история развития металлов и металлических конструкций, классификацию, используемые сырьевые материалы при их изготовлении, технологические процессы, свойства продукции, ТЭП при производстве.
История развития металлических конструкций в России
Понятие
"металлические конструкции"
включает в себя их
Первый период (с XII до начала XVII в.) характеризуется применением металла в уникальных по тому времени сооружениях (дворцах, церквах и т.п.) в виде затяжек и скреп для каменной кладки. Затяжки выковывали из кричного железа и скрепляли через проушины на штырях. Одной из первых конструкций такого типа являются затяжки Успенского собора во Владимире. По зрелости конструктивного решения выделяется металлическая конструкция, поддерживающая каменный потолок и пол чердака над коридором между притворами Покровского собора — храма Василия Блаженного. Это первая известная нам конструкция, состоящая из стержней, работающих на растяжение, изгиб и сжатие. Затяжки, поддерживающие пол и потолок в этой конструкции, укреплены для облегчения работы на изгиб подкосами.
Поражает, что уже в те времена конструктор знал, что для затяжек, работающих на изгиб, надо применять полосу, поставленную на ребро, а подкосы, работающие на сжатие, лучше делать квадратного сечения.
Второй период (с начала XVII до конца XVIII в.) связан с применением наклонных металлических стропил и пространственных купольных конструкций ("корзинок") глав церквей. Стержни конструкций выполнены из кованых брусков и соединены на замках и скрепах горновой сваркой. Конструкции такого типа сохранились до наших дней. Примерами служат перекрытия пролетом 18 м над трапезной Троице-Сергиевой лавры в Сергиевом посаде, перекрытие старого здания Большого Кремлевского дворца в Москве, каркас купола колокольни Ивана Великого, каркас купола Казанского собора в Петербурге пролетом 15 м и др.
Третий период (с начала XVIII до середины XIX в.) связан с освоением процесса литья чугунных стержней и деталей. Строятся чугунные мосты и конструкции перекрытий гражданских и промышленных зданий. Соединения чугунных элементов осуществляются на замках или болтах. Первой чугунной конструкцией в России считается перекрытие крыльца Невьянской башни на Урале. В 1784 г. в Петербурге был построен первый чугунный мост. Совершенства чугунные конструкции в России достигли в середине XIX столетия. Уникальной чугунной конструкцией 40-х годов XIX в. является купол Исаакиевского собора, собранный из отдельных косяков в виде сплошной оболочки.
Чугунная арка пролетом 30 м применена в перекрытии Александрийского театра в Петербурге. В 50-е годы XIX в. в Петербурге был построен Николаевский мост с восемью арочными пролетами от 33 до 47 м, являющийся самым крупным чугунным мостом мира. В этот же период наслонные стропила постепенно трансформируются в смешанные железочугунные треугольные фермы.
Сначала
в фермах не было раскосов,
они появились в конце рассматр
Четвертый период (с 30-х годов XIX в. до 20-х годов XX в.) связан с быстрым техническим прогрессом во всех областях техники того времени и, в частности, в металлургии и металлообработке. В начале XIX в. кричный процесс получения железа был заменен более совершенным — пудлингованием, а в конце 80-х годов — выплавкой железа из чугуна в мартеновских и конвертерных печах.
Наряду с
уральской базой была создана
в России южная база
Сталь почти полностью вытеснила из строительных конструкций чугун, будучи материалом более совершенным по своим свойствам (в особенности при работе на растяжение) и лучше поддающимся контролю и механической обработке.
В России до конца
XIX в. промышленные и гражданские
здания строились в основном
с кирпичными стенами и
В конце прошлого
столетия применялись
Пятый период (послереволюционный) начинается с 20-х годов, с первой пятилетки, когда государство приступило к осуществлению широкой программы индустриализации страны. К концу 40-х годов клепаные конструкции были почти полностью заменены сварными, более легкими, технологичными и экономичными. Развитие металлургии уже в 30-е годы позволило применять в металлических конструкциях вместо обычной малоуглеродистой стали более прочную низколегированную сталь (сталь кремнистую для железнодорожного моста через р. Ципу в Закавказье и сталь ДС для Дворца Советов и москворецких мостов).
В начале 30-х годов
стала оформляться советская
школа проектирования
Стальные каркасы
Требованиям эксплуатации
и высоких темпов
В годы Великой Отечественной войны 1941—1945 гг. несмотря на временную потерю южной металлургической базы и большой расход металла на нужды войны в промышленном строительстве и мостостроении на Урале и в Сибири широко использовались металлические конструкции, лучше других отвечавшие основной задаче военного времени — скоростному строительству.
В 50—70-е годы строительство
металлических конструкций
Классификация металлов может быть основана на различных признаках: по объему и частоте использования, физико-химическим свойствам и др.
По объему и частоте использования металлов в технике их можно разделить на металлы технические и редкие. Технические металлы — это наиболее часто применяемые; к ним относятся железо Fe, медь Си, алюминий А1, магний Mg, никель Ni, титан Ti, свинец РЬ, цинк Zn, олово Sn. Все остальные металлы — редкие (ртуть Hg, натрий Na, серебро Ag, золото Аи, платина Pt, кобальт Со, хром Сг, молибден Мо, тантал Та, вольфрам W и др.).
Железо в чистом виде используется чрезвычайно редко. Обычно используют железоуглеродистые (Fe-C) сплавы — стали и чугуны, которые образуют группу черных металлов. Все остальные представляют группу цветных металлов. На долю черных металлов приходится ~85 % всех производимых металлов, а на долю цветных -15 %.
По физико-химическим свойствам металлы можно разделить на шесть основных групп.
Магнитные — Fe, Co, Ni обладают ферромагнитными свойствами. Сплавы на основе Fe (стали и чугуны) являются главными конструкционными материалами; сплавы на основе Fe, Co и Ni являются основными магнитными материалами (ферромагнетиками).
Тугоплавкие — металлы, у которых температура плавления выше, чем у Fe (1539 °С); это W (3380 °С), Та (2970 °С), Мо (2620 °С), Сг (1900 °С), Pt (1770 °С), Ti (1670 °С) и др. Применяют их как самостоятельно, так и в виде добавок в стали, работающие, в частности, при высокой температуре.
Легкоплавкие — имеют 7^ ниже 500 °С; к ним относятся: Zn (419 °С), РЬ (327 °С), кадмий Cd (321 °С), таллий Т1 (303 °С), висмут Bi (271 °С), олово Sn (232 °С), индий In (156 °С), Na (98 °С), Hg (—39 °С) и др. Назначение их самое различное: антикоррозионные покрытия, антифрикционные сплавы, проводниковые материалы.
Из тугоплавких и легкоплавких металлов перечислены наиболее распространенные, хотя известны и такие тугоплавкие металлы, как, например, рений Re (3180 °С), осмий Os (3000 °С), ниобий Nb (2470 °С), а из легкоплавких — литий Li (180 °С), калий К (68 °С), рубидий Rb (39 °С), цезий Cs (28 °С).
Легкие металлы имеют плотность не более 2,75 Мг/м3; к ним относится А1, плотность — 2,7, Cs — 1,90, бериллий Be — 1,84, Mg —1,74, Rb — 1,53; Na — 0,97, Li — 0,53 Мг/м3 и др. Эти металлы 337 применяют для производства сплавов, используемых в конструкциях с ограничениями в массе.
Благородные — в электротехнике применяют Аи, Ag, Pt, палладий Pd, а также металлы платиновой группы: иридий 1г, родий Rh, осмий Os, рутений Ru. Эти металлы и сплавы на их основе обладают высокой химической стойкостью, в том числе и при повышенных температурах. Их используют в производстве ответственных контактов, выводов интегральных микросхем и других полупроводниковых приборов, термометров сопротивления и термопар, нагревательных элементов, работающих в особых условиях.
Редкоземельные — лантаноиды; их применяют как присадки в различных сплавах. Сплавы (RM) металлов группы железа (М) с редкоземельными элементами (R) являются весьма перспективными магнитотвердыми материалами.
Классифицируются металлы и по другим признакам, например в электротехнике по значению электропроводности: хорошо и плохо проводящие электрический ток; к первым относится большинство металлов, они хорошо проводят электрический ток и пластичные. Ко вторым — элементы V группы периодической системы Д.И. Менделеева — это висмут Bi, сурьма Sb, мышьяк As, они плохо проводят ток и хрупкие, их иногда называют полуметаллами.[2]
Металл |
Символ |
Температура плавления, °С |
Важнейшее сырье и способ получения металла |
Алюминий |
Al |
660,1 |
Бокситы (Al2O3 с примесями). Электролиз при 950°С расплава, содержащего боксит и криолит Na3[AlF6] (искусственный или природный) |
Бериллий |
Be |
1287 |
Берилл(Be3Al2)Si6O18, фенакит Be2SiO4 и др. переводят в BeCl2 или BeF2. Далее – электролиз BeCl2 в расплаве (с добавкой NaCl), либо восстановление BeF2 магнием при 925-1325 °С |
Вольфрам |
W |
3416 |
Шеелит CaWO4. После извлечения кислотным или щелочным способом полученный порошок WO3 восстанавливают водородом, прессуют и спекают (порошковая металлургия) |
Железо |
Fe |
1535 |
Гематит Fe2O3, магнетит (FeIIFe2III)O4, сидерит FeCO3, лимонит Fe2O3 . nH2O. В доменных печах при 1200-1400°С идет восстановление железа углеродом (кокс), выплавляется чугун (содержит 2-5% С). Передел чугуна в сталь (содержание С не более 2%) идет в конвертере или мартеновской печи при 1700 °С; ведется продувка воздуха либо кислорода (для удаления излишнего количество углерода) |
Магний |
Mg |
650 |
Карналлит KMgCl3 . 6H2O, магнезит MgCO3 и др. Электролиз расплава MgCl2 при 750-780 °С |
Медь |
Cu |
1083 |
Халькозин Cu2S, халькопирит (FeIIICuI)S2. Обжиг сырья, конвертирование до черновой меди (окисление воздухом сульфидов меди в расплаве), растворение в серной кислоте и электролиз раствора CuSO4 |
Натрий |
Na |
97,86 |
Галит NaCl. Электролиз расплава NaCl (с добавками CaCl2 и др. солей), электролиз расплава NaOH |
Олово |
Sn |
231,9 |
Касситерит SnO2 и вторичное сырье. Восстановительная плавка с углем и добавками, образующими шлак, в электропечах. Очистка электролизом или зонной плавкой |
Свинец |
Pb |
327,4 |
Галенит PbS. Окислительный обжиг до PbO, восстановление углеродом (кокс) до сырого свинца (“веркблей”). Очистка сырого свинца электролизом |
Титан |
Ti |
1671 |
Ильменит FeTiO3, рутил TiO2 и др. Хлорирование сырья, восстановление TiCl4 магнием |
Хром |
Cr |
1890 |
Хромит (Cr2IIIFeII)O4. Алюмотермия (восстановление алюминием) при 500-600 °С. Дальнейшая очистка хрома - электролизом |
Цинк |
Zn |
419,5 |
Сфалерит ZnS. Обжиг сырья, восстановление углеродом, очистка чернового цинка электролизом раствора ZnSO4 |
Информация о работе Металлы в строительстве, металлические конструкции