Автор работы: Пользователь скрыл имя, 06 Апреля 2012 в 18:40, реферат
Некоторые детали и узлы современных машин и аппаратов работают в таких условиях, при которых они должны быть одновременно механически прочными и стойкими при воздействии на них высоких температур, химически агрессивных сред и др. Выполнять такие изделия из одного материала почти невозможно и экономически нецелесообразно. Гораздо выгоднее и проще изготовить деталь, например, из конструкционной стали, удовлетворяющей требованиям механической прочности, и покрыть ее поверхность более дорогим жаропрочным, износостойким или кислотоупорным сплавом
Плазменная
наплавка и напыление. Некоторые
детали и узлы современных машин
и аппаратов работают в таких
условиях, при которых они должны
быть одновременно механически прочными
и стойкими при воздействии на
них высоких температур, химически
агрессивных сред и др. Выполнять
такие изделия из одного материала
почти невозможно и экономически
нецелесообразно. Гораздо выгоднее
и проще изготовить деталь, например,
из конструкционной стали, удовлетворяющей
требованиям механической прочности,
и покрыть ее поверхность более
дорогим жаропрочным, износостойким
или кислотоупорным сплавом. Используя
в качестве защитных покрытий различные
по составу металлические и
Преимущества методов плазменного нанесения покрытий перед другими (гальваническим, вакуумным, кислородно-ацетиленовым и др.) заключаются в следующем:
высокая температура плазменного потока позволяет расплавлять и наносить самые тугоплавкие материалы;
поток плазмы
дает возможность получать сплавы различных
по свойствам материалов или наносить
многослойные покрытия из различных
сплавов. Это открывает широкую
возможность получения
возможности этого способа не ограничены формой и размерами обрабатываемого изделия;
плазменная
дуга - наиболее гибкий источник
нагрева, позволяющий в
Для плазменной наплавки наиболее широко применяется плазмотрон комбинированного действия (см. рис.). При горении независимой дуги такого плазмотрона между вольфрамовым электродом и соплом происходит расплавление присадочного металлического порошка, а при горении дуги между электродом и изделием поверхность последнего нагревается, и обеспечивается сплавление присадочного и основного металла. Использование комбинированной плазменной дуги позволяет получить минимальную глубину проплавления и долю основного металла в составе наплавленного, что является важнейшим технологическим преимуществом плазменной наплавки по сравнению с другими способами наплавки.
Схема установки для плазменной наплавки металлическим порошком
1 - источник
питания дуги прямого действии;
2 - балластные сопротивления; 3 - источник
питания дуги косвенного
Защита наплавляемого слоя от воздействия окружающей среды обеспечивается потоком инертного газа, окружающим дугу и подаваемым в наружное сопло плазмотрона. Присадочный порошок подается также инертным транспортирующим газом из специального порошкового питателя.
С помощью плазменной наплавки металлическим порошком можно получить жаростойкие и наиболее износостойкие покрытия из сплавов на основе никеля и кобальта. Этот способ позволяет получить тонкий равномерный слой покрытия с гладкой беспористой поверхностью, часто не требующей дополнительной механической обработки. При плазменной наплавке токоведущей присадочной проволокой дуга горит между катодом плазмотрона и проволокой, являющейся анодом, равномерно подаваемой в пространство между соплом и изделием. При таком способе обеспечивается более высокая производительность процесса наплавки при малой глубине проплавления основного металла, однако возможности получения тонкого и равномерного слоя при таком способе наплавки ограничены. Кроме того, применение присадочного материала в виде порошка позволяет использовать для наплавки практически любые сплавы, что трудно осуществить при использовании проволоки в качестве присадочного материала. При плазменной наплавке в качестве плазмообразующего, защитного и транспортирующего газов обычно используется аргон. Расход газа и диапазон рабочих токов и напряжений при наплавке примерно тот же, что и при плазменной сварке. В отличие от наплавки процесс напыления характеризуется большей концентрацией теплового потока и высокой скоростью течения плазменной струи. Появление этого отличия связано с тем, что при плазменном напылении в качестве материалов покрытия применяются тугоплавкие металлы (вольфрам, молибден, тантал и др.) или окислы металлов (Аl2О3, MgO, ZrO2), силициды (MoSi2), карбиды (В4С, SiC), бориды (ZnB2, HfB2), т. е. неметаллические материалы, обладающие весьма высокой температурой плавления. Эти материалы, приготовленные в виде мелкогранулированного порошка (размеры частиц 40-70 мкм), проходя через плазменную струю, успевают нагреться в основном лишь до пластического состояния. Однако благодаря высокой скорости плазменной струи частицы порошка приобретают значительную кинетическую энергию и при соударении с напыляемой поверхностью расплющиваются внедряясь в нее и заполняя неровности. Пр1 этом кинетическая энергия частиц выделяется в виде тепла, температура их повышается, что обеспечивает прочное сцепление частиц между собой и с поверхностью изделия. Для напыления используется плазменная дуга косвенного действия, горящая между охлаждаемыми водой вольфрамовым катодом и медным соплом (анодом) и выдуваемая через сопло в виде плазменного факела. Схема плазмотрона для напыления показана на рис. 10. На досопловом и внутрисопловом участках плазмотрона происходит плазмообразование. Порошок вместе с транспортирующим его газом подается в небольшое отверстие вблизи выхода из сопла, т. е. вдувается в наиболее высокотемпературную область плазменной струи. Нагрев порошка происходит на участке, который начинается от анодного пятна и заканчивается факелом плазмы. Эффективность нагрева частиц порошка определяется временем их пребывания в плазме, т. е. расстоянием от среза сопла до изделия и мощностью плазменной струи. Повыше ние мощности может быть достигнуто при использовании двухатомных газов с высоким теплосодержанием, например N2 и Н2. Благодаря высокой теплопроводности водорода увеличивается длина высокотемпературной части факела, что дает возможность повысить температуру порошка за счет некоторого удаления плазмотрона от обрабатываемого изделия. Однако скорость плазменной струи с удалением от среза сопла понижается. Поэтому следует выдерживать оптимальное расстояние от среза сопла до поверхности изделия, величина которого зависит от параметров режима напыления, от материала покрытия и изделия и изменяется от 4 до 20 мм. Мощность плазмотрона, используемого для напыления, можно повысить также при увеличении длины досоплового и внутрисоплового участков столба дуги, однако при чрезмерном увеличении внутрисоплового участка столба дуги затрудняется возбуждение дуги, обычно производимое с помощью высокочастотного пробоя. Увеличение длины канала сопла свыше определенного предела приводит к явлению шунтирования столба дуги и снижению к. п. д. плазмотрона. Обычно в плазмотронах для напыления диаметр сопла составляет 5- 6 мм, длина досоплового участка - 4-8 мм, а длина канала сопла - 10-18 мм. Повышение мощности плазмотрона за счет увеличения тока дуги ограничивается стойкостью сопла (анода). При эрозии сопла появляется не только опасность его разрушения, но и возможность загрязнения напыляемого материала, что может резко ухудшить качество покрытия. В плазмотронах для напыления вращение анодного пятна по внутренней стенке сопла создается либо с помощью вихревой системы ввода рабочего газа, либо с помощью магнитного поля, образуемого катушкой постоянного тока, надетой на сопло. При использовании водорода в качестве рабочего газа с целью уменьшения величины теплового потока, направленного от дуги к соплу, водород применяют в смеси с аргоном, обеспечивающим тепловую изоляцию сопла от столба дуги. Обычно в плазмотронах для напыления ток не превышает 400 а, напряжение при использовании азота и смеси водорода с аргоном в зависимости от их расхода изменяется в пределах 60-100 в. Таким образом, мощность не превышает 40 квт. При этом производительность процесса напыления в зависимости от материала покрытия составляет 2-3 кг/ч. Качество обработки поверхности при плазменном напылении определяется максимальной прочностью сцепления материала покрытия с изделием и минимальной пористостью покрытия. Высокое качество покрытия обеспечивается при соответствии физических свойств материалов, например в случае близости значений их коэффициентов теплового расширения. Повышение качества достигается при тщательной подготовке поверхности изделия перед процессом (обезжиривание, пескоструйная обработка, сушка и др.) и правильном выборе параметров режима напыления. Эти вопросы подробно рассмотрены в соответствующей литературе [2].
Литература
Вайнерман А.Е. и др. Плазменная наплавка Л., "Машиностроение" 1969
Усов Л.Н., Борисенко А.И. Применение плазмы для получения высокотемпературных покрытий М., "Наука", 1965
Плазменная сварка и наплавка является наиболее прогрессивным способом восстановления изношенных деталей машин и нанесения износостойких покрытий (сплавов, порошков, полимеров,…) на рабочую поверхность при изготовлении деталей.
Плазмой называется высокотемпературный сильно ионизированный газ, состоящий из молекул, атомов, ионов, электронов , световых квантов и др.
При дуговой
ионизации газ пропускают через
канал и создают дуговой
В зависимости
от схемы подключения анода
1. Открытую
плазменную струю (анодом
2. Закрытую
плазменную струю (анодом
3. Комбинированная
схема (анод подключается к
детали и к соплу горелки). В
этом случае горят две дуги,
Схема используется при
Рис.1. Схема плазменной сварки открытой и закрытой плазменной струей.
Наплавку
металла можно реализовать
1-струя газа захватывает и подает порошок на поверхность детали;
2-вводится
в плазменную струю
В качестве плазмообразующих газов можно использовать аргон, гелий, азот, кислород, водород и воздух. Наилучшие результаты сварки получаются с аргоном.
Достоинствами плазменной наплавки являются :
1. Высокая
концентрация тепловой
2. Возможность
получения толщины
3. Возможность
наплавления различных
4. Возможность выполнения плазменной закалки поверхности детали.
5. Относительно высокий К. П. Д. дуги (0.2-0.45).
Очень эффективно использовать плазменную струю для резки металла, т.к. газ из-за высокой скорости очень хорошо удаляет расплавленный металл, а из-за большой температуры он плавится очень быстро.
Установка (рис. 2.) состоит из источников питания, дросселя, осциллятора, плазменной головки, приспособлений подачи порошка или проволоки, системы циркуляции воды и т.д.
Для источников питания важно выдержка постоянным произведение J U, т.к. мощность определяет постоянство плазменного потока. В качестве источников питания применяют сварочные преобразователи типа ПСО - 500. Мощность определяется длиной столба и объемом плазменной струи. Можно реализовать мощности свыше 1000 кВт.
Подача порошка осуществляется с помощью специального питателя, в котором, вертикально расположенный, ротор лопатками подает порошок в струю газа. В случае использования сварочной проволоки подача ее выполняется аналогично как и при наплавке под слоем флюса .
Путем колебания горелки в продольной плоскости с частотой 40-100 мин -1 за один проход получают слой наплавленного металла шириной до 50 мм. У горелки имеется три сопла : внутреннее для подачи плазмы, среднее для подачи порошки и наружное для подачи защитного газа.
Рис.2. Схема
плазменного наплавления
При наплавке порошков реализуется комбинированная дуга, т. е. одновременно будут гореть открытая и закрытая дуги . Регулировкой балластных сопротивлений можно регулировать потоки мощности на нагрев порошка и на нагрев и оплавление металла детали. Можно добиться минимального проплавления основного материала, следовательно будет небольшая тепловая деформация детали.
Поверхность детали необходимо готовить к наплавке более тщательно чем при обычной электродуговой или газовой сварке, т.к. при этом соединение происходит без металлургического процесса, поэтому посторонние включения уменьшают прочность наплавленного слоя. Для этого производится механическая обработка поверхности (проточка, шлифование, пескоструйная обработка,...) и обезжиривание. Величину мощности электрической дуги подбирают такой, чтобы сильно не нагревалась деталь, и чтобы основной металл был на грани расплавления.
овыми или высокочастотными плазматронами. При плазменной обработке изменяется форма, размеры, структура обрабатываемого материала или состояние его поверхности. Плазменная обработка включает: разделительную и поверхностную резку, нанесение покрытий, наплавку, сварку, разрушение горных пород (плазменное бурение).
Плазменная обработка получила широкое распространение вследствие высокой по промышленным стандартам температуры плазмы (~ 104 К), большого диапазона регулирования мощности и возможности сосредоточения потока плазмы на обрабатываемом изделии; при этом эффекты плазменной обработки достигаются как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью — так называемый скоростной напор плазменного потока). Удельная мощность, передаваемая поверхности материала плазменной дугой, достигает 105—106 Вт/см2, в случае плазменной струи она составляет 103—104 Вт/см2. В то же время тепловой поток, если это необходимо, может быть рассредоточен, обеспечивая «мягкий» равномерный нагрев поверхности, что используется при наплавке и нанесении покрытий.
Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом (разрезаемым металлом) и катодом плазменной горелки. Стабилизация и сжатие токового канала дуги, повышающее её температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующего газа (Ar, N2, H2, NH4 и их смеси). Для интенсификации резки металлов используется химически активная плазма. Например, при резке воздушной плазмой O2, окисляя металл, даёт дополнительный энергетический вклад в процесс резки. Плазменной дугой режут нержавеющие и хромоникелевые стали, Cu, Al и др. металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять её в поточных непрерывных производственных процессах. Мощность установок достигает 150 кВт. Неэлектропроводные материалы (бетоны, гранит, тонколистовые органические материалы) обрабатывают плазменной струей (дуга горит в сопле плазменной горелки между её электродами). Нанесение покрытий (напыление) производится для защиты деталей, работающих при высоких температурах, в агрессивных средах или подверженных интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка или проволоки в плазменную струю, в которой он плавится, распыляется, приобретает скорость ~ 100 — 200 м/сек и в виде мелких частиц (20—100 мкм) наносится на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам. Мощность установок для напыления 5—30 кВт, максимальная производительность 5 — 10 кг напыленного материала в час. Для получения порошков со сферической формой частиц, применяемых в порошковой металлургии, в плазменную струю вводят материал, частицы которого, расплавляясь, приобретают под действием сил поверхностного натяжения сферическую форму. Размер частиц может регулироваться в пределах от нескольких мкм до 1 мм. Более мелкие (ультрадисперсные) порошки с размерами частиц 10 нм и выше получают испарением исходного материала в плазме и последующей его конденсацией.