Производство керамического кирпича

Автор работы: Пользователь скрыл имя, 02 Ноября 2013 в 13:39, дипломная работа

Описание работы

В данный момент в производстве строительного керамического кирпича сосредоточено внимание на совершенствовании технологии, улучшении качества выпускаемой продукции и расширении ассортимента. При строительстве новых предприятий предусматривается установление автоматизированных и высокомеханизированных технологических линий на базе современного отечественного и импортного оборудования. Осваивается выпуск эффективной пустотелой продукции, которая должна постепенно заменять традиционный полнотелый кирпич. Это позволит не только экономить сырьё, но и уменьшать толщину и массу наружных стен без снижения их теплозащитных свойств, а также создавать облегчённые конструкции панелей для индустриализации строительства.

Содержание работы

Аннотация 1
Содержание 2
Введение. 3
1. Обоснование необходимости реконструкции действующего предприятия. 8
2. Аналитический обзор источников информации. 9
3. Технологическая часть. 17
3.1 Ассортимент и характеристика выпускаемой продукции. 17
3.1.1 Основные параметры и размеры. 17
3.1.2 Технические требования. 18
3.2 Выбор сырьевой базы и энергоносителей. 23
3.2.1 Характеристика сырья. 25
3.2.2 Характеристика топлива. 26
3.3 Обоснование состава композиции. 28
3.4 Технологическая схема проектируемого производства. 29
3.5 Теоретические основы технологических процессов цеха формования, сушки, обжига. 35
3.6 Контроль производства и качества продукции. 55
3.7 Технохимические расчеты. 61
3.7.1 Расчет химического состава шихты по шихтовому составу массы. 62
3.8 Материальные расчеты. 63
3.8.1 Материальный баланс цеха. 63
3.9 Режим работы цехов предприятия. 73
3.10 Производственная программа предприятия. 74
3.11 Выбор и расчет оборудования цеха формования, сушки и обжига. 75
3.12 Выбор и расчет бункеров и складов. 78
3.13 Теплоэнергетические расчеты 79
3.13.1 Теплотехнический расчет печи. 85
4. Автоматизация технологического процесса. 96
4.1 Описание схемы автоматизации туннельной печи. 97
4.2 Спецификация на приборы. 98
5. Охрана труда. 99
5.1. Анализ степени опасности технологического процесса при производстве керамического кирпича. 99
5.2 Микроклиматические условия. 101
5.3 Выбор и расчет системы вентиляции. 103
5.4 Оценка взрывопожарной и пожарной опасности. Пожарная профилактика. 104
5.5 Освещение. 105
6. Охрана окружающей среды. 107
7. Строительная часть. 111
8. Экономическая оценка проектных решений. 113

Файлы: 1 файл

diplom_(version_04-06-01).doc

— 1.04 Мб (Скачать файл)

Усадка зависит от влажности  заготовки и размера частиц твердой  фазы. Линейная усадка в сушке заготовок  пластического формования составляет  6-8%.

Величины критической влажности  и усадки зависят от режима сушки. Наибольшую усадку имеют заготовки, высушенные в равновесных условиях. Чем выше температура и ниже влажность теплоносителя, тем меньше усадка. Рост градиента влажности в объеме заготовки увеличивает разницу между фактической и максимально возможной усадками. Эта разница (недопущенная усадка) вызывает появление механического напряжения. Если последнее превысит предел прочности материала, то в теле заготовки образуется трещина.

Причиной появления трещин в период постоянной скорости сушки полуфабриката является перепад влажности между наружными и внутренними частями заготовки. Критерием трещинообразования могут служить максимально допустимая разность между средней (интегральной) влажностью заготовки Wt и влажностью ее поверхности Wпов:

ΔW = Wt - Wпов                    (3.5.4)

Максимальная интенсивность (скорость) сушки, не приводящая к образованию трещин, определяется соотношением:

jmax = KΔWmaxρ A/l,             (3.5.5)

где А — коэффициент формы, равный 6 для пластины; l — характеристический размер (толщина пластины, диаметр цилиндра).

Продолжительность сушки зависит  от толщины высушиваемого изделия и не зависит от его плотности и площади поверхности.

В период падающей скорости сушки  усадки отсутствуют, поэтому сушку можно интенсифицировать, повысив температуру и скорость движения теплоносителя.

В процессе сушки могут возникать  различные дефекты.

Тотальные трещины, проходящие через  тело заготовки, возникают из-за больших скоростей прогрева заготовки, имеющей малый коэффициент влагопроводности, на первой стадии сушки.

Срединные трещины возникают  после образования жесткого каркаса  частиц на краях заготовки, препятствующего  усадке влажных центральных частей. Предотвратить образование краевых и срединных трещин можно, покрыв края влагоизолирующим веществом (маслами, растворами сульфитно-спиртовой барды или поливинилового спирта и т. п.).

Рамочные трещины могут  возникнуть при трении заготовки  о подставку в процессе усадки. Этот вид брака характерен для  кирпича пластического формования. Его можно предотвратить, периодически перекладывая изделия с грани на грань и используя подсыпки (песок, опилки, шамот).

Микротрещины и волосяные  трещины возникают при адсорбции воды из воздуха или дымовых газов высушенным полуфабрикатом. Этот вид брака можно предотвратить, прекратив сушку при влажности несколько выше, чем максимальная влагоемкость материала при данной температуре.

Коробление изделий  может возникнуть при односторонней  сушке плоских изделий, например облицовочных плиток, при анизотропной структуре полуфабриката, неравномерном распределении влаги в заготовке.

Для оценки сушильных  свойств глин и полуфабриката на их основе используют показатели чувствительности глин к сушке, характеризующие склонность материала к растрескиванию в период усадки. Коэффициент чувствительности, предложенный З.А. Носовой, определяют как отношение объема усадки VУС, к объему пор в высушенном материале VПОР:

КЧ = VУС/VПОР = V/V0[(m0 - m)/(Vo - V) - 1],        (3.5.6)

где Vo и V - объемы свежеотформованного и высушенного при 20°С образцов, см3; m0 и m - массы влажного и высушенного образцов, г.

По методу А.Ф. Чижского коэффициент чувствительности к сушке определяют по формуле:

КС = (WН - WКР)/WКР,                  (3.5.7)

где WН и WКР - начальная (формовочная) и критическая влажность образца, %.

Чем выше коэффициенты КЧ и КС, тем сильнее склонность полуфабриката к растрескиванию в сушке. Для малочувствительных глин КЧ< 1 и КС< 1,2, а для высокочувствительных глин KЧ>2 и КС> 1,8.

 Обжиг.

Процесс обжига изделий строительной керамики может быть условно разделен на четыре периода:

  1. подогрев до 200°С и досушка-удаление физической воды из глины;
  2. дальнейший нагрев до 700°С «на дыму» и удаление химически связанной воды из глины;
  3. «взвар» - до температуры обжига 980-1000°С - созревание черепа;
  4. охлаждение, «закал» - медленное до 500°С и быстрое от 500 до 50°С обожженных изделий.

К этим реакциям добавляется  выгорание топлива из изделия, если это топливо было введено в  глину при подготовке массы; количество вводимого топлива может достигать 70-80% от того количества, которое необходимо для обжига.

Такое производственное деление на периоды не вскрывает сущности реакций в глине при обжиге. При производственном обжиге глин никогда не достигается термодинамическое равновесие. Тем не менее, можно прибегнуть к расчету изобарно-изотермического потенциала ∆Z некоторых реакций с целью сопоставления возможности появления тех или иных фаз в глине при ее обжиге.

Можно отметить шесть  главных видов реакций, протекающих  в рядовых глинах при обжиге:

1) выделение гигроскопической  воды из глинистых минералов  и воды из аллофаноидов, если таковые присутствуют в глине;

2) окисление органических  примесей;

3) выделение конституционной  воды, т. е. дегидратация глинистых минералов и реакции в так называемых твердых фазах;

4) жидкофазные реакции  и образование стекловидного  расплава;

  1. образование новых кристаллических фаз;
  2. реакции декарбонизации и десульфуризации.

Первая группа реакций  характеризуется небольшим эндоэффектом (I) на термограмме суглинка и гидрослюдисто-каолинитовой глины (рис. 3.5.7).

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 3.5.7 Изменение  усадки, прочности, потери массы сырца в сопоставлении с термограммами типовых глин I, II, III,(α- усадка, δ- потеря массы, σ- прочность при изгибе).

 При этом образуется водяной  пар, давлением которого может разорвать изделие («лопанец») при слишком быстром подъеме температуры. Эта реакция сопровождается падением температуропроводности глины.

Вторая  группа  реакций - окисление органических примесей - характеризуется экзоэффектом (II) при 300—400°С. Часть этих примесей может остаться (при быстром подъеме температуры и недостаточном притоке и диффузии в толщу изделия кислорода воздуха) невыгоревшей, что обнаруживается по темной сердцевине в изломе изделия. При замедленном выгорании может произойти графитизация части углерода. Так как причиной ограничения действия кислорода воздуха на процесс выгорания углерода в глине выступает противоток СО и СОз, то при более быстром подъеме температуры влияние окислительной среды должно сокращаться, а влияние внутренней восстановительной среды — увеличиваться, что зависит от пористости и размеров изделия и от концентрации углерода.

Глинистые минералы в процессе своей  дегидратации действуют каталитически, содействуя горению углерода в глине, а выделяющаяся вода способствует выгоранию углерода по реакции:

 С+Н2О=СО+Н2.

Наряду с этим может протекать отложение углерода в глине из газовой среды, содержащей 1-3% СО при 400 и выше 1000°С.

Скорость выгорания топлива  по мере повышения температуры увеличивается, но только до стадии появления жидкой фазы в обжигаемой глине, после чего скорость выгорания резко снижается из-за ухудшения диффузии кислорода воздуха. Максимальное значение скорости выгорания топлива имеет место примерно при 780—800°С. Поэтому рекомендуется осуществлять выдержку в этом этапе обжига.

Третья группа реакций - дегидратация глинистых минералов - характеризуется эндоэффектом (III) (рис. 3.5.7), который растягивается с 500 (450) до 600°С (700°С), а у некоторых каолиновых глин - до 900°С и также сопровождается падением температуропроводности.

Эндотермическая реакция, начинающаяся около 500°С и оканчивающаяся около 700°С, заключается в удалении из каолинита химически связанной (гидратной) воды:

Аl2O3 • 2SiO2 • 2H2O → Al2O3•2SiO2 + 2H2O.

Продукты разложения составляющих глины и керамические массы минералов (Аl2О3∙2SiO2, SiO2, Аl2О3, CaO, MgO, Fe2О3 и .др. окислы) в процессе обжига взаимодействуют между собой при высоких температурах (1000°C и выше) и образуют легкоплавкие силикаты, плавление которых вызывает спекание и размягчение глин. Степень спекания глинистых материалов зависит от температуры и длительности обжига, от состава глинистого сырья, газовой среды, рода и количества плавней, а также от способа формования изделий.

Газовая среда обжига влияет на интенсивность дегидратации; увеличение концентрации H2O в газовой среде задерживает реакцию дегидратации по закону действующих масс; восстановительная среда, вызывая реакцию отщепления кислорода в активных условиях «оборванных связей», понижает температуру дегидратации, что показано на термограммах I, II, III сдвигом эндо- и экзоэффектов в восстановительной среде одной стрелкой влево, в парогазовой фазе - двумя стрелками вправо.

Ход усадки, потеря массы  и рост прочности σизг при обжиге этих типов глин показаны кривыми в нижней части рис. 3.5.7

Не менее важную роль играет и газовая среда в печи, которая влияет на процессы, протекающие при формировании черепка, и поэтому она также должна регламентироваться режимом обжига. Эта среда может быть окислительной, нейтральной и восстановительной.

Окислительная среда  характеризуется избытком воздуха против того количества, которое теоретически необходимо для полного сгорания топлива.

Присутствие 4-5% кислорода  в продуктах горения при обжиге изделий тонкой керамики типично для окислительной среды. Содержание кислорода в пределах 8-10% свидетельствует о сильно окислительной среде и полезно при интенсивном выгорании органических веществ массы.

Образование жидкой (стекловидной) фазы в гидрослюдистых глинах начинается по крайней мере с 700°С, но заметное развитие эти фазы получают лишь при температурах на 150-200°С выше. Появление стеклофазы содействует дальнейшему растворению в ней некоторой части минеральных составляющих глины и новому минералообразованию. Стеклофаза обеспечивает спекание и образование черепа. С физической стороны действие стеклофазы характеризуется усадкой изделия. В зависимости от степени развития стеклофазы, что регулируется выдержкой и созреванием черепа, можно сообщить ему ту или иную плотность (пористость). Именно в этом процессе и состоят операции выдержек - «взвар» и начала охлаждения - «закал», которые необходимо осуществлять: «взвар» - в пределах температур 980-1000°С и «закал» - до 800°С, а также длительностей для получения кирпича должного качества - ярко-красного (не алого) по цвету и звонкого при ударе. Кроме того, выдержка необходима для выравнивания температурного поля в печи.

Охлаждение обожженных изделий — не менее ответственная  операция. При 800-780°С череп изделия  строительной керамики находится в  пиропластическом состоянии и переходит  в твердое состояние, поэтому необходимо замедлять охлаждение во избежание появления напряжений, которые могут разрядиться местными разрывами (трещинами). Считают опасным также участок 650- 500°С в связи с обратимым превращением α-β-кварц.

Спекание материала - существенный момент процесса обжига, так как к этому времени заканчивается формирование керамического изделия. Окончание спекания изделия характеризуется прекращением его усадки. Условными показателями спекшегося материала являются его водопоглощение.

Спекаемость глины зависит от содержания в ней плавней и степени  их дисперсности.

На процесс формирования керамического  черепка влияют: химический и гранулометрический состав сырья, соотношение компонентов в массе, а также температурно-газовый режим обжига.

Образующиеся в процессе обжига глин и керамических масс легкоплавкие соединения проявляют себя двояким  образом. Во-первых, они действуют  химически, растворяя частицы минералов, образуя жидкую фазу и выделяя  из раствора новые, более устойчивые мниералообразования, именуемые эвтектическими смесями. Во-вторых, они действуют физически, благодаря своей энергии поверхностного натяжения, сближая и уплотняя твердые частицы глины.

Обжиг изделий грубой строительной керамики ведется до появления минимального количества легкоплавких соединений, которые связывают дегидратированные частицы глинообразующих минералов и зерна кварца, что и обеспечивает достаточную механическую прочность изделий.

Большое значение имеет  подбор температурного режима обжига. Он должен быть таким, чтобы реакции дегидратации, декарбонизации, окисления и восстановления отдельных компонентов, составляющих глину, не налагались бы на реакции образования легкоплавких эвтектик. Эти реакции должны следовать одна за другой, но практически, вследствие сложного состава керамических масс, образование жидких соединений начиняется обычно ранее, чем закончатся декарбонизация, окисление и т. д.

Температурный режим  при выдержке и охлаждении определяется главным образом видом, формой и размерами изделий, а также температурным интервалом модификационных превращений в материале.

 

3.6 Контроль производства  и качества продукции.

 

Современный этап производства тугоплавких  неметаллических и силикатных материалов характеризуется расширением ассортимента, повышением качества, возрастанием единичной мощности технологических линий, внедрением поточных технологий. Все это требует коренного совершенствования структуры, методов и средств контроля производства.

Информация о работе Производство керамического кирпича