Расчёт опоры путепровода устойчивости подпорной стенки

Автор работы: Пользователь скрыл имя, 30 Сентября 2015 в 13:46, курсовая работа

Описание работы

Заданы геологические колонки по скважинам, физические характеристики грунта, образец задания приводится.
Необходимо произвести расчёт откоса выемки в грунте, расчёт подпорной стенки, ограждающей выемку в грунте, расчёт осадки фундамента промежуточной опоры путепровода.
Отдельным разделом курсовой работы выделяется задача по определению вертикальных составляющих напряжений sz от действия на поверхности грунта сосредоточенной силы N.

Содержание работы

Реферат. . . . . . . . . . . . . . . . . . . . . . . . . . .3
1. Расчёт, напряжений от действия сосредоточенной силы. . . . .4
Построение эпюры распределения вертикальных составляющих напряжений sz по горизонтальной оси, заглублённой от поверхности на z0 и пересекающейся с линией действия силы N. . . . . . . . . 4
1.2. Построение эпюры распределения вертикальных составляющих напряжений sz по вертикальной оси, удалённой от линии действия силы N на заданное расстояние r0. . . . . . . . . . . . . . . . 5
2. Расчёт искусственных сооружений на трассе автомобильной дороги. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1. Оценка инженерно-геологических условий строительной
площадки. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Расчёт фундамента опоры путепровода по деформациям
основания. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1. Определение размеров подошвы фундамента. . . . . . . . . 11
2.2.2. Расчёт осадки фундамента опоры путепровода. . . . . . . .12
2.3. Расчёт подпорной стенки, ограждающей выемку в грунте. . . .15
2.3.1. Воздействие активного давления грунта на подпорную
стенку. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2. Воздействие пассивного давления грунта на подпорную
стенку. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Расчёт устойчивости откоса выемки в грунте графоаналити-ческим методом круглоцилиндрических поверхностей скольжения. . 20

Библиографический список. . . . . . . . . . . . . . . . . . . . 24

Файлы: 1 файл

Расчёт опоры путепровода устойчивости подпорной стенки.docx

— 61.02 Кб (Скачать файл)

Pnz=gIz*tg2(450+jI/2)+2CI*tg(450-jI/2)

 

Эту зависимость можно сокращенно записать в следующем виде:

Pnz=Pnh+Pnc

 

Где        Pnh=gIztg2(450+jI/2)

    Pnc=2CItg(450+jI/2)

 

Поскольку зависимость пассивного давления от глубины носит линейный характер, то для построения эпюры достаточно определить пассивное давление в двух точках – при z=0 и при z=h0. Равнодействующая пассивного давления определяется как площадь эпюры пассивного давления по формуле:

Еn=(Pnh+2Pnc)*h0/2

 

Момент относительно точки 0 передней грани подпорной стенки определяется по формуле:

   Pnh+3Pnc h02


    3    * 2

 

Точка приложения равнодействующей пассивного давления грунта определяется путем определения расстояния от подошвы подпорной стенки до линии действия равнодействующей пассивного давления:

e0=Mon/En

 

При z= 0 м; Pпz= 27,59  кПа.

При z= 1,6 м; Pпz= 79,81  кПа.

Равнодействующая Еп1= 85,92 кН.

Определяем удерживающий момент Моп= 57,59 кНм.

 

Построение эпюры пассивного давления грунта на подпорную стенку по результатам расчета: выбирается система координат. Анализ полученных данных после расчета подпорной стенки заключается в сопоставлении результатов расчета активного и пассивного давления грунта на подпорную стенку.

 

 

Рассматривая момент относительно точки О действия на подпорную стенку активного давления, как опрокидывающий момент сравниваем его с удерживающим моментом от опрокидывания подпорной стенки, который включает в себя наряду с моментом относительно точки О передней грани подпорной стенки от пассивного давления и момента относительно той же точки от собственного веса подпорной стенки.

Mou=Mon+Qe1

 

Где Q – собственный вес подпорной стенки (в расчетах обычно учитываем вес подпорной стенки на длине 1м);

    е1 – плечо момента от действия силы Q относительно точки О передней грани подпорной стенки.

Либо воспользуемся следующей формулой:

Mou=Ene1+G2b

 

Где е1=b/2;

    G=Hbgб кН

 

Имеем Mou= 91,69 кНм

 

По отношению Mou/Moa=h делается вывод об устойчивости подпорной стенки. Если h 1,1 подпорная стенка устойчива. Если h<1,1 – подпорная стенка неустойчива.

Вывод: h= 0,38 следовательно 0,38<1,1, что означает что стенка                                          неустойчива. При b= 2 м  Mou= 300,24 кНм  h>1,1 следовательно стенка устойчива.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Эпюры активного и пассивного давлений на подпорную стенку.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Расчёт устойчивости откоса выемки в грунте графоаналитическим методом круглоцилиндрических поверхностей скольжения

Метод основан на проверке устойчивости откоса выемки по одной из вероятных поверхностей скольжения. В качестве такой поверхности с учётом имеющихся наблюдений выбраны цилиндрическая. Ответственным этапом расчёта является графическое построение цилиндрической поверхности скольжения. Заданный откос должен быть начерчен в масштабе, желательно на миллиметровой бумаге. Для построения цилиндрической поверхности скольжения выбирается центр вращения "О". Приближенно положение центра вращения определяем на пересечении линий, проведённых с учётом углов y=30° и b=40°.

С помощью циркуля из центра вращения "О" через точку "В" в подошве откоса проводится окружность, отсекающая призматический объём грунта с поперечным сечением АВС.

Расчётным является призматический объём грунта с сечением, ограниченным поверхностью откоса и поверхностью скольжения. Высота призматического объёма в расчётах обычно назначается равной 1 м. Выделенная сползающая часть массива грунта вертикальными плоскостями делится на элементы, каждый из которых должен иметь участок цилиндрической поверхности скольжения целиком размещённый в одном слое грунта.

Количество элементов назначается в зависимости от сложности геологических условий площадки и глубины выемки, обычно 8-12 элементов. Аналитическую часть расчёта целесообразно производить с записью промежуточных результатов в таблицу расчёта устойчивости откоса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Расчет устойчивости откоса.                         Таблица 6.

Номер элемента

Размеры сечения, м

Площадь сечения, м2

Вес элемента, Gi, кН

Угол,ai, град.

Ni=Gi*cosai, кН

Fi=Gi*sinai, кН

jIi, град.

СIi, кПа

Li, м

СIili, кН

NitgjIi, кН

Fui, кН

1

2

3

4

5

6

7

8

9

10

11

12

13

1

0,35х0,7

0,25

4,73

660

1,92

4,32

0

0

0,9

0

0

0

2

1,5х2,92

4,43

83,73

500

53,81

64,14

19,1

16,6

2,6

43,16

18,63

61,79

3

1,5х4,1

6,15

116,24

370

92,83

69,95

19,1

16,6

1,9

31,54

32,15

63,69

4

1,5х4,4

6,6

124,4

240

113,65

50,59

16,95

22,3

1,7

37,91

34,64

72,55

5

1,5х3,8

5,7

107,45

130

104,69

24,17

16,95

22,3

1,5

33,45

31,91

65,36

6

1,5х2,9

4,35

81,99

20

81,94

2,86

16,95

22,3

1,5

33,45

24,97

58,42

7

1,45х1,7

2,47

46,56

-90

45,99

-7,28

16,95

22,3

1,5

33,45

14,02

47,47

8

1,6х1,7

2,72

51,27

-190

48,48

-16,69

16,95

22,3

1,8

40,14

14,78

54,92

         

S

192,06

   

S

253,1

171,1

424,2


 

В первом столбце таблице записываются номера расчётных элементов. Во втором столбце записываются геометрические размеры сечений элементов в метрах. Эти размеры снимаются с чертежа, и определяются с учётом выбранного масштаба.

В третьем столбце записываются приближённые значения площадей поперечных сечений элементов в м2.

В четвёртом столбце таблицы записывается вес элементов Gi, определяемый с учётом объёмов этих элементов Vi и осреднённого удельного веса грунта, вмещаемого в эти элементы gср.i по формуле:

Gi=Vi*gср.i

Графически или аналитически определяется центры тяжести каждого элемента. Из центров тяжести сечений до пересечения с круглоцилиндрической поверхностью скольжения проводятся вертикали, являющиеся линиями действия гравитационных сил веса Gi каждого из этих элементов.

Из центра вращения "О" в точке пересечения линий действия веса каждого из элементов с поверхностью скольжения аi проводятся лучи, образующие с вертикалью углы ai.

С помощью транспортира изменяются углы ai их величины заносятся в столбец 5. Полученные данные позволяют по правилу параллело-грамма разложить силы каждого из элементов Gi на нормальные Ni и касательные составляющие Fi силы к площадкам скольжения каждого из элементов.

 

Ni=Gi*cosai

Fi=Gi*sinai

Значения Ni и Fi заносятся в столбцы 6 и 7. Денные столбца 7 необходимо просуммировать и записать SFi. Реактивные усилия Fui, действующие на участках поверхностей скольжения каждого из элементов, определяются по формуле:   Fui=NitgjIili

 

 

 

Для определения составляющих Fui, в столбцы 8 и 9 записываются углы внутреннего трения jIi и удельные сцепления СIi грунтов, залегающих в пределах участков поверхности скольжения i-го элемента.

В столбец 10 записываются длины участков поверхности скольжения в пределах i-го элемента li. В столбце 11 построчно записываются произведения CIili.

В столбце 12 построчно записываются произведения NitgjIi. Данные столбцов 11 и 12 суммируются, а затем полученные суммы складываются между собой:

SFui=SCIi+SNitgjIi

 

Результаты расчёта коэффициента устойчивости откоса "К":

K=SFui/SFi

Необходимые данные для расчёта коэффициента устойчивости откоса имеются в таблице расчёта устойчивости откоса. Откос считается устойчивым по выбранной поверхности скольжения, если  
К 1,1.

К = 424,2/192,06 = 2,2

Вывод: так как К > 1,1, то можно сказать, что откос по выбранной поверхности скольжения устойчивый.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Графическое построение круглоцилиндрической поверхности скольжения, масштаб 1:50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература

 

1. Пособие по проектированию  оснований зданий и сооружений : М: ЦИТП Госстрой СССР, 1986; - С 14-24,30-32,172-174.

2. Методические указания к курсовой  работе по механике грунтов  для студентов специальности 1211 "Автомобильные дороги".

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Расчёт опоры путепровода устойчивости подпорной стенки