Автор работы: Пользователь скрыл имя, 12 Мая 2013 в 09:56, курсовая работа
В экономических исследованиях часто решают задачу выявления факторов, определяющих уровень и динамику экономического процесса. Такая задача чаще всего решается методами корреляционного и регрессионного анализа. Для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи и не только выявить, но и дать им количественную оценку. Этот подход требует вскрытия причинных зависимостей. Поэтому актуальность выявления этих взаимосвязей, определяемых методами регрессионного анализа, чрезвычайна важна в настоящее время.
Целью курсовой работы является анализ регрессионного анализа, его методов и применение их на практике (в т.ч. и в таможенной статистике внешней торговли.
3. Все факторные
признаки должны иметь
4. Наличие достаточно
большого объема исследуемой
совокупности (в последующих примерах
в целях упрощения изложения
материала это условие
5. Причинно-следственные
связи между явлениями и
6. Отсутствие количественных
ограничений на параметры
7. Постоянство территориальной
и временной структуры
Соблюдение данных требований позволяет построить модель, наилучшим образом описывающую реальные социально-экономические явления и процессы.
Парная регрессия позволяет получить аналитическое выражение связи между двумя признаками: результативным и факторным.
Определить тип уравнения можно, исследуя зависимость графически, однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, то это свидетельствует о том,
что связь между ними линейная, а при обратной связи – гиперболическая. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболическая или степенная регрессия.
Оценка параметров уравнений регрессии (a0 , a1 , и a2 – в уравнении параболы второго порядка) осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметров модели (a0 , a1 ), при которых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по выбранному уравнению регрессии (формула 1):
(1)
Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид (формула 2):
(2)
где n – объем исследуемой совокупности
(число единиц наблюдения).
В уравнениях регрессии параметр a0 показывает усредненное влияние на результативный признак неучтенных в уравнении факторных признаков. Коэффициент регрессии a1 показывает, на сколько в среднем изменяется значение результативного признака при увеличении факторного признака на единицу собственного измерения.
Пример. Имеются следующие данные о размере страховой суммы и страховых возмещений на автотранспортные средства одной из страховых компаний г. Иркутска на 01.01.2012 г(таблица 1).
Таблица 1
Зависимость между размером страховых возмещений и страховой суммой на автотранспорт одной из страховых компаний г. Иркутска на 01.01.2012 г.
Предположим наличие линейной
зависимости между
Построим расчетную
таблицу для определения
Таблица 2
Расчетная таблица для определения параметров уравнения регрессии
Система нормальных уравнений для данного примера имеет вид:
Отсюда:
Следовательно,
Значения в таблице 8.3 получены путем подстановки значений факторного признака хi (стоимость застрахованного автомобиля) в уравнение регрессии
Коэффициент регрессии a1 = 0,5166 означает, что при увеличении стоимости застрахованного автомобиля на 1 тыс. долл. США, объем страхового возмещения (тыс. долл. США) возрастет в среднем на 0,5166 тыс. долл. США.
Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии (формула 3):
(3)
Построение моделей множественной регрессии
включает несколько этапов:
1. Выбор
формы связи (уравнения
2. Отбор факторных признаков;
3. Обеспечение
достаточного объема
Выбор типа уравнения затрудняется тем, что для любой формы зависимости можно выбрать целый ряд уравнений, которые в определенной степени будут описывать эти связи. Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации.
Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков.
С одной стороны, чем больше факторных признаков включено в уравнение, тем оно лучше описывает явление. Однако модель размерностью 100 и более факторных признаков сложно реализуема и требует больших затрат машинного времени. Сокращение размерности модели за счет
исключения второстепенных, экономически и статистически несущественных факторов способствует простоте и качеству ее реализации. В то же время построение модели регрессии малой размерности может привести к тому, что такая модель будет недостаточно адекватна исследуемым явлениям и процессам.
Проблема отбора
факторных признаков для
Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность метода шаговой регрессии заключается в реализации алгоритмов последовательного «включения», «исключения» или «включения-исключения» факторов в уравнение регрессии и последующей проверке их статистической значимости. Алгоритм «включения» заключается в том, что факторы поочередно вводятся в уравнение так называемым «прямым методом».
При проверке значимости введенного фактора определяется, на сколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции ( ). Одновременно используется и алгоритм последовательного «исключения», сущность которого заключается в том, что исключаются факторы, ставшие незначимыми по статистическим критериям.
Фактор является незначимым, если его включение в уравнение регрессии только изменяет значения коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного
коэффициента корреляции увеличивается, а коэффициента регрессии не изменяется (или меняется несущественно), то данный признак существенен и его включение в уравнение регрессии необходимо. В противном случае, фактор нецелесообразно включать в модель регрессии.
При построении модели регрессии возможна проблема мультиколлинеарности, под которой понимается тесная зависимость между факторными признаками, включенными в модель ( > 0 8 ).
Наличие мультиколлинеарности между признаками вызывает:
• искажение величины параметров модели, которые имеют тенденцию к завышению,
чем осложняется процесс определения наиболее существенных факторных признаков;
• изменение смысла экономической интерпретации коэффициентов регрессии.
В качестве причин возникновения мультиколлинеарности между признаками можно выделить следующие:
• изучаемые факторные признаки являются характеристикой одной и той же стороны изучаемого явления или процесса. Например: показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба
характеризуют размер предприятия;
• факторные признаки являются составляющими элементами друг друга. Например: показатели выработки продукции на одного работающего и численность работающих одновременно в модель включать нельзя, так как в основе расчета показателей лежит один и тот же показатель – численность работающих на предприятии.
• факторные признаки по экономическому смыслу дублируют друг друга.
Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.
Вопрос о том, какой из факторов следует отбросить, решается на основании качественного, логического анализа изучаемого явления, а также
на основе анализа тесноты связи между результативным (y) c каждым из сильно коллинеарно связанных факторных признаков. Из дальнейшего анализа целесообразно исключить тот факторный признак, связь которого с результативным наименьшая.
Качество уравнения регрессии зависит от степени достоверности и надежности исходных данных и объема совокупности. Исследователь должен стремиться к увеличению числа наблюдений, так как большой объем наблюдений является одной из предпосылок построения адекватных статистических моделей. Аналитическая форма связи результативного признака от нескольких факторных выражается и называется многофакторным (множественным) уравнением регрессии или моделью связи.
Линейное уравнение множественной регрессии имеет вид (формула 4):
(4)
Исследование объективно существующих связей между социально-экономическими явлениями и процессами является важнейшей задачей
теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения – это такая связь явлений и процессов, когда изменение одного из них – причины ведет к изменению другого – следствия.
Финансово-экономические процессы представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих процессов необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.
В основе первого этапа статистического изучения связи лежит качественный анализ, связанный с анализом природы социального или экономического явления методам экономической теории, социологии, конкретной экономики. Второй этап – построение модели связи, базируется на методах статистики: группировках, средних величинах, и так далее. Третий, последний этап – интерпретация результатов, вновь связан с качественными особенностями изучаемого явления. Статистика разработала множество методов изучения связей. Выбор метода изучения связи зависит от познавательной цели и задач исследования.
Регрессионный анализ предназначен для изучения по выборочным данным статистической зависимости ряда величин; некоторые из которых являются случайными. При статистической зависимости величины не связаны функционально, но как случайные величины заданы совместным распределением вероятностей. Исследование взаимосвязи случайных величин биржевых ставок приводит к теории корреляции, как разделу теории вероятностей и корреляционному анализу, как разделу математической статистики. Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных.
Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Таким образом, регрессионные вычисления и подбор хороших уравнений - это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (маркетинг, торговля, медицина и т. д.). Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.
Список использованных источников