Строение стенки сердца и сосудов

Автор работы: Пользователь скрыл имя, 19 Октября 2014 в 13:26, реферат

Описание работы

В сердечно – сосудистую систему входят сердце, кровеносные и лимфатические сосуды. Сосудистая система и сердце у человека обеспечивают распространение по организму крови, питательных и биологически активных веществ, газов, продуктов питательных и биологически активных веществ, газов, продуктов метаболизма и тепловой энергии.

Файлы: 1 файл

5.docx

— 44.31 Кб (Скачать файл)

Капилляры

Кровеносные капилляры наиболее наиболее многочисленные и самые тонкие сосуды, однако просвет их может варьировать. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы. Например наиболее узкие капилляры находятся в поперечно полосатых мышцах и в нервах, более широкие обнаруживаются в коже и слизистых оболочках. В кроветворных органах, железах внутренней секреции встречаются капилляры особого типа, меняющиеся на протяжении сосуда.Такие капилляры называют синусоидными.

В капиллярах, образующих петли, выделяют артериальный и венозный отделы. Ширина артериального отдела в среднем равна диаметру эритроцита, а венозного - несколько больше. Количество капилляров в разных органах не одинаково. В любой ткани в обычных физиологических условиях находится до 50% нефункционирующих капилляров. Просвет их, как правило, сильно уменьшен, но полного сокращения капилляров при этом не происходит. Для форменных элементов крови эти капилляры оказываются непроходимыми, плазма продолжает циркулировать. Число капилляров в определенном органе связанно с его общими многофункциональными особенностями, а количество открытых капилляров зависит от интенсивности работы органа в данный момент.

Вены

Венозная система составляет отводящее звено крови. Она начинается посткапилярными венулами в сосудах микроцеркуляторного русла. Строение вен тесно связанно с гемодинамическими условиями их функционирования. Низкое кровяное давление и незначительная скорость кровотока определяют сравнительно слабое развитие эластических элементов в венах и большую растяжимость их.

По степени развития мышечных элементов в стенке вен они могут быть разделены на две группы: вены безмышечного типа и вены мышечного типа. Вены мышечного типа в свою очередь подразделяются на вены со слабым развитием мышечных элементов и вены со средним и сильным развитием мышечных элементов.

В венах, так же и в артериях различают три оболочки: внутреннюю, среднюю и наружную. Выраженность этих оболочек в строении их различных венах существенно отличается.

Вены безмышечного типа

К ним относятся вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Вены мозговых и сетчатки глаза податливы при изменении кровяного давления, могут сильно растягиваться, но скопившаяся в них кровь сравнительно легко под действием собственной силы тяжести оттекает в более крупные венозные стволы. Вены костей, селезенки и плаценты также пассивны в продвижении по ним крови. Это объясняется тем, что все они плотно сокращены со стенками соответствующих органов и не спадаются, поэтому отток крови по ним совершается легко. Эндотелиальнае клетки, выстилающие эти вены, имеют более извилистые границы, чем в артериях. Снаружи к ним прилежит базальная мембрана, а затем тонкий слой рыхлой волокнистой соединительной ткани, срастающийся с окружающими тканями.

Вены мышечного типа

Вены со слабым развитием мышечных элементов различны по диаметру. Сюда относятся вены мелкого и среднего калибра сопровождающие артерии мышечного типа в верхней части туловища, шеи лица, а также такие крупные вены, как например верхняя полая вена. В этих сосудах кровь в значительной мере продвигаются пассивно вследствие своей тяжести. К этому же типу вен можно отнести и вены верхних конечностей. Стенки таких вен несколько тоньше соответствующих по калибру артерий, содержат меньше мышечных элементов и на препаратах находятся обычно в совпавшемся состоянии.

Веня мелкого и среднего калибра со слабым развитием мышечных элементов имеют плохо выраженный подэдотелиальный слой во внутренней оболочке небольшое количество пучков мышечных клеток в средней оболочке, а в других оболочках миоциты вообще отсутствуют. В некоторых мелких венах, например, в венах пищеварительного тракта, гладкие мышечные клетки в средней оболочке, образуют отдельные "пояски", далеко отстающие друг от друга. Благодаря такому строению вены могут сильно расширятся и выполнять депонирующую функцию.

В наружной оболочке мелких вен встречаются единичные продольно направленные гладкие мышечные клетки.

Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена. В стенке в средней оболочке мышцы развиты слабо. Слабое развитие мышечной ткани в стенке такой крупной вены обусловлено, вероятно, прямохождением благодаря собственной силе тяжести. В начале диастолы желудочков в предсердии появляется даже небольшое отрицательное кровяное давление, которое как бы подсасывает кровь из полых вен. Что касается нижней полой вены, из которой кровь также изливается в правое предсердие, то для подъема крови против силы тяжести отрицательного давления оказывается не достаточно. В этих гемодинамических условиях подъему крови к сердцу могут способствовать пучки гладких мышечных клеток, имеющихся во всех трех оболочках нижней полой вены.

Использование сканирующей электронной микроскопии, коррозионных препаратов, полученных с помощью инъекции сосудистого русла специальными смолами, позволило установить ряд структурных особенностей внутренних поверхностей вен. В частности внутренняя оболочка вены имеет продольные складки значительно превышающие по ширине подобные складки в артериях, что отражает при равных диаметрах артериального и венозного сосудов уменьшение площади прикосновения ее с кровью. Степень развитости циркулярно расположенных пучков гладких мышечных клеток имеет определенную корреляцию с появлением поперечно ориентированных мышечных элементов, является плечевая вена эндотелий выстилающий ее внутреннюю оболочку, менее вытянутый, чем в соответствующей артерии. Подэндотелиальный слой состоит из тонких соединительно тканных волокон и клеток, ориентированных в основном вдоль сосуда. Во внутренней оболочке обнаруживается отдельные продольно направленные гладкие мышечные клетки. Внутренняя эластическая мембрана в вене не выражена, а на границе между внутренней и средней оболочками располагается сеть эластических волокон. Эластические волокна внутренней оболочки плечевой вены, как и в артериях, связанны с эластическими волокнами средней и наружной оболочек и составляют единый каркас. Средняя оболочка этой вены гораздо больше, чем в соответствующей артерии. Она обычно состоит из циркулярно расположенных пучков гладкомышечных клеток, разделенных прослойками волокнистой соединительной ткани. Наружная эластическая мембрана в этой вене отсутствует, поэтому соединительнотканные прослойки средней оболочки переходят непосредственно в рыхлую волокнистую соединительную ткань наружной оболочки. В плечевой вене она очень сильно развита: ее размеры превышают размеры средней оболочки, направлены преимущественно продольно. Кроме того, в наружной оболочке встречаются в небольшие пучки их, которые также расположены продольно.

К венам с сильным развитием мышечных элементов относятся крупные вены нижней половины туловища и ног. Для них характерно выраженное развитие пучков гладкомышечной ткани во всех трех их оболочках, причем во внутренней и наружной оболочках они имеют продольное направление, а в средней – циркулярное. По мере увеличения калибра вен количество мышечных пучков в средней оболочке уменьшается, но зато их число возрастает в наружной оболочке. Продольное расположение пучков гладких мышечных клеток во внутренней и наружной оболочках вен имеет определенное физиологическое значение: сокращение этих пучков ведет к образованию поперечных складок в стенках вен, что препятствует обратному движению крови. Этому же способствуют клапаны во внутренней оболочке большинства средних и некоторых крупных вен. Ритмические же сокращения циркулярно расположенных мышечных пучков способствует продвижению крови к сердцу. Наиболее типично для этой группы вен строение бедренной вены. Внутренняя оболочка ее состоит из эндотелия и подэдотелиального слоя, образованного рыхлой волокнистой соединительной тканью, в которой продольно залегают пучки гладких мышечных клеток. Внутренняя эластическая мембрана отсутствует, однако на ее месте видны скопления эластических волокон.

Внутренняя оболочка бедренной вены снабжена клапанами, представляющие собой такие складки внутренней оболочки вены. Эндотелиальные клетки, покрывающие клапан со стороны, обращенный в просвет сосуда, имеют удлиненную форму и направлены вдоль продольной оси, а на противоположной стороне клапан покрыт эндотелиальными клетками, полигональной формы, лежащими поперечно. Основу клапана составляет волокнистая соединительная ткань. При этом на стороне, обращенной к просвету сосуда, под эндотелием залегают преимущественно эластические волокна, а на противоположной стороне много колагеновых волокон. В основании створки клапана может находится некоторое количество гладких мышечных клеток.

Клапаны в венах способствуют току венозной крови к сердцу препятствуют ее обратному движению. Одновременно клапаны предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих венах под влиянием различных внешних воздействий (изменение атмосферного давления). Однако наличие в бедренной вене пучков гладких мышечных клеток в оболочках и клапанов оказывается недостаточным для подъема крови против сил тяжести. Существенную роль в этом играет сокращение скелетной мускулатуры нижних конечностей.

Средняя оболочка бедренной вены содержит пучки циркулярно расположенных гладких мышечных клеток. Выше основания клапана средняя оболочка истончается. Ниже места прикрепления клапана мышечные пучки перекрещиваются, создавая утолщение в стенке вены. В наружной оболочке, образованной волокнистой соединительной тканью, обнаруживаются пучки продольно расположенных гладких мышечных клеток.

Нижняя полая вена по строению резко отличается от впадающих в нее вен. Внутренняя и средняя оболочка нижней полой вены развиты очень слабо. В этих оболочках находятся лишь одиночные пучки мышечных клеток. Во внутренней оболочке они лежат продольно, а в средней – циркулярно. Наружная оболочка нижней полой вены имеет большое количество продольно расположенных пучков гладких мышечных клеток и по своей толщине в 6-7 раз превышает внутреннюю и среднюю оболочку вместе взятые. Между пучками гладких мышечных клеток лежат прослойки волокнистой соединительной ткани. В устье нижней полой вены в ее наружную оболочку заходят пучки поперечно полосатых мышечных волокон миокарда. В средней и наружной оболочках содержатся сосуды сосудов, лимфатические капилляры и многочисленные нервные волокна.

 

Содержание: 

Первичный ангиогенез. 
Вторичный ангиогенез. 
Гистогенез артерий. 
Гистогенез вен. 
Возрастные перестройки сосудов. 
Заключение. 
Список использованной литературы. 

Различают первичный и  вторичный ангиогенез. Первичный ангиогенез иначе называется васкулогенезом. Он представляет собой процесс непосредственного начального образования сосудистой стенки из мезенхимы. Вторичный ангиогенез – формирование сосудов, путем их отрастания от уже имеющихся сосудистых структур.  
Первичный ангиогенез. 
Первые сосуды появляются вне тела эмбриона в стенке желточного мешка на 3ей неделе эмбриогенеза, под  влиянием входящей в его состав энтодермы. Сначала из мезенхимы образуются кровяные островки, их клетки начинают дифференцироваться в двух направлениях: гематогенном и ангиогенном.  
-Гематогенная линия дает начало клеткам крови; 
- Ангиогенная линия дает начало первичным эндотелиальным клеткам, которые соединяются друг с другом и образуют стенки кровеносных сосудов. 
На первых порах стенка новообразующихся сосудов не сплошная: на больших участках кровяные островки длительное время не имеют сосудистой стенки.  
Несколько позже сходным  образом возникают сосуды и в  мезенхиме тела эмбриона. Отличия  заключаются в том, что в кровяных островках вне тела эмбриона ангио - и гематогенные процессы идут параллельно, в теле же эмбриона мезенхима, как  правило, образует свободные от крови  эндотелиальные трубочки. Вскоре между  возникшими таким образом эмбриональными и внеэмбриональными сосудами устанавливается сообщение. Только в этот момент внеэмбрионально образованная кровь поступает в тело эмбриона. Одновременно регистрируются и первые сокращения сердечной трубки. Тем самым начинается становление первого, желточного, круга кровообращения развивающегося зародыша. 
  
Первые закладки сосудов  в теле эмбриона отмечены в период формирования первой пары сомитов. Они  представлены тяжами, состоящими из скоплений  мезенхимных клеток, расположенных  между мезодермой и энтодермой на уровне передней кишки. Эти тяжи образуют с каждой стороны два ряда: медиальный ("аортальная линия") и латеральный ("сердечная линия"). Краниально эти закладки сливаются, образуя сетевидное "эндотелиальное сердце". Одновременно из мезенхимы по бокам тела зародыша между энтодермой и мезодермой образуются закладки пупочных вен. Далее отмечается преимущественное развитие сердца, обеих аорт и пупочных вен. Только после того, как эти главные магистрали желточного и хорионального (аллантоидного) кровообращения в основном сформируются (стадия 10 пар сомитов) начинается, собственно, развитие других сосудов тела эмбриона. 
У человеческого зародыша кровообращение в желточном и аллантоидном кругах начинается практически одновременно у 17-сегментного эмбриона (начало сердцебиений). Желточное кровообращение существует у человека недолго, аллантоидное преобразуется в плацентарное и осуществляется вплоть до конца внутриутробного периода. 
Описанный способ образования сосудов  имеет место в основном в раннем эмбриогенезе. Сосуды, образующиеся позже, развиваются несколько иным путем. Со временем все большее распространение  получает способ новообразования сосудов (сначала типа капилляров) путем  почкования. Этот последний способ в постэмбриональном периоде  становится единственным. 
  
  
  
  
Схема формирующегося капиллярного отростка: 
I - Миграция эндотелиоцитов, II - деления эндоцелиоцитов, III - дефинитивных эндотелиоцитов. 
Вторичный ангиогенез. 
Различают эмбриональный  и постнатальный эмбриогенез.Дальнейший рост сосудов у зародыша идет путем  растрастания эндотелия по стенкам  щелевидных пространств. Формирование просвета сосудов в теле зародыша идет двумя путями. Различают интраэндотелиальный  и интероэндотелиальный механизмы. При интраэндотелиальном механизме  просвет образуется путем слияния  вакуолей. При втором, межклеточном механизме эндотелиоциты замыкаясь, образуют полость сосуда. Ранние сосуды представляют собой эндотелиальные трубочки, окруженные недифференцированной паравазальной мезенхимой. 
Первичные сосуды очень напоминают капилляры, так как их стенка практически  полностью состоит из эндотелия, сосуды выполняют обменные функции. Они обнаруживаются в любых закладках  органов и тканей. Еще в процессе ранних перестроек сосудов, значительная часть этих первичных сосудов  запустевает и редуцируется.  
Гистогенез  артерий. 
У человека к артериям эластического  типа относятся аорта и легочный ствол.  
Рассмотрим  гистогенез артерий на примере аорты. 
У человека внутренняя оболочка аорты на ранних этапах развития представлена лишь монослоем эндотелиальных клеток, которые затем отделяются формирующейся внутренней эластической мембраной от дифференцирующихся ГМК средней оболочки. В последующем утолщение интимы идет за счет соединительнотканных волокон и небольшого количества клеток.  
Эндотелиальные клетки у 1-3-месячных эмбрионов в большинстве своем имеют удлиненную форму, их ядра ориентированы вдоль сосуда. В дуге аорты ядра эндотелиоциты крупнее, чем в других отделах, неравномерно расположены по окружности сосуда. Исследования, проведенные на животных, показали, что эндотелиоциты эмбрионов - веретеновидной формы с выбухающими ядрами и западающими межклеточными границами, поверхность их покрыта множеством микроворсинок. Цитоплазма ЭК богата органеллами: содержит хорошо развитую эндоплазматическую сеть и большее количество митохондрий, чем у взрослых. 
  
  
  
  
  
 Аорта новорожденного. 
  
По мере развития плода  полиморфизм эндотелиоцитов увеличивается, что особенно выражено в восходящей части и в дуге аорты. На поздних этапах пренатального развития эндотелиоциты имеют неправильную форму, выбухают в просвет сосуда, располагаются параллельно длинной оси.  
По параметрам тканевой мозаики  эндотелиальная выстилка аорты плода  человека в местах стабильного кровотока  относится к полирядным, упорядоченным, ориентированным тканевым мозаикам. Эндотелиальные мозаики в местах гемодинамических нагрузок относятся к другой генеральной совокупности, чем в местах стабильного кровотока. Параметры мозаики по мере удаления от входа в межреберную артерию изменяются, приближаясь к показателям, характерным для зон стабильного кровотока. 
Субэндотелиальный слой внутренней оболочки к моменту рождения в  достаточной степени выражен  и кроме соединительнотканных волокон  содержит клетки. Однако, сроки возникновения и клеточный состав субэндотелиального слоя аорты человека в пренатальном онтогенезе значительно варьируют. Так, у отдельных объектов в стенке аорты 5-месячного плода почти по всей окружности сосуда был выявлен субэндотелиальный слой, представленный одним - двумя рядами крупных полиморфных клеток. Но в большинстве случаев к моменту рождения слой слабо развит. Он состоит, главным образом, из тонкофибриллярной решетки и клеток преимущественно звездчатой формы. Эти клетки немногочисленны, неравномерно расположены. Природа клеток субэндотелиального слоя аорты плода и происхождение до настоящего времени остаются невыясненными. Возможно, гематогенное происхождение этих клеток, или же они являются гладкомышечными клетками, мигрировавшими из средней оболочки. 
Внутренняя эластическая мембрана выявляется у 7-9-недельных эмбрионов человека. Тонкие эластические волокна обнаруживаются уже в стенке аорты зародыша длиной 29 мм, а у зародышей длиной 44 мм видны эластические мембраны. Коллагеновые волокна формируются раньше, чем эластические. У 8-недельного эмбриона эластический каркас представлен 20-22 тонкими концентрическими мембранами. 
Субэндотелиальные клетки во внутренней оболочке аорты появляются во второй половине пренатального развития из медии, по ультраструктурной организации они характеризуются как ГМК синтетического фенотипа. В пренатальном онтогенезе в стенке аорты наблюдается полиморфизм ГМК по форме. В средней оболочке среди ГМК на ранних этапах развития преобладают округлые и веретеновидные клетки. На поздних этапах - округлых ГМК не обнаруживается, преобладают веретеновидные миоциты. На ранних этапах пренатального развития в медии аорты ближе к эндотелию располагаются округлые ГМК, кнаружи - веретеновидные. На поздних этапах - ближе к эндотелию располагаются звездчатые и Y-образные клетки, кнаружи - веретеновидные миоциты. 
В средней оболочке на ранних этапах эмбрионального развития описано  три типа клеток: недифференцированные мезенхимальные, фибробласты, гладкомышечные клетки. Этап превращения миобластов в типичные ГМК выделяется иногда в отдельную фазу. На третьем-четвертом месяце внутриутробного развития плода человека средняя оболочка состоит из эластических волокон, большого количества клеточных элементов и пучков коллагеновых волокон. Волокнистая основа на поперечных срезах аорты имеет циркулярную ориентацию, среди клеточных элементов преобладают гладкомышечные. Ядра последних крупные, ориентированы концентрически. 
С 6-го месяца в медии заметно нарастает количество ГМК, ядра их удлиняются, принимая иногда палочковидную форму. Мышечные элементы располагаются на протяжении сосуда неравномерно. В брюшном отделе аорты, особенно над бифуркацией, выявляется больше мышечных элементов, чем в восходящей части, а вблизи полулунного клапана они почти отсутствуют. 
В эмбриональных ГМК по сравнению с ГМК зрелой аорты снижено количество альфа-актина, а также содержание миозина, десмина и виментина. На поздних этапах пренатального онтогенеза в средней оболочке артерий большинство ГМК дифференцированы. Цитоплазма содержит хорошо развитые миофиламенты, гранулярный эидоплазматический ретикулум и другие органеллы.  
Наружная оболочка аорты  человека формируется из клеток мезенхимального происхождения, располагающихся по периферии сосудистой стенки. Рост се в толщину происходит за счет увеличения количества соединительнотканных клеток и синтезируемых ими волокнистых структур: коллагеновых, а позднее эластических. Кровеносные сосуды обнаруживаются впервые в наружной оболочке стенки аорты у 3-4-месячных эмбрионов. 
К концу внутриутробного  развития наружная оболочка по сравнению  с 5-6-месячными плодами становится относительно тоньше. Она представлена главным образом коллагеновыми  и ретикулиновыми волокнами, а также  соединительнотканными клетками и единичными ГМК. Со второй половины внутриутробного развития в наружной оболочке появляются отдельные эластические волокна, которые вначале обнаруживаются лишь во внутренней части. Располагаются они преимущественно продольно. Позже эластические волокна обнаруживаются в составе всей наружной оболочки. 
При гистогенезе сосудов мышечного типа в средней оболочке постепенно развивается слой гладкомышечных клеток и достигает своего дефинитивного состояния к концу пренатального онтогенеза или в начальные сроки постнатального периода. Постепенно вокруг ГМК разивается базальная мембрана, из окружающей соединительной ткани развивается наружний адвентициальный слой артерий. Процессы дифференцировки в артериальных сосудах протекают гораздо раньше и интенсивнее, чем в венозных. 
Гистогенез  вен. 
 Различают вены мышечного  (мозговые оболочки, кости, селезенки,  сетчатки, плаценты. ) и безмышечного типа. Последние состоят из двух тонких оболочек:  внутренняя из слоя эндотелиоцитов на базальной мембране и наружный – слой рыхлой соединительной ткани. Средняя оболочка у них отсутствует. Вены мыщечного типа подразделяются на три группы – со слабым развитием мышечных элементов, средним и сильным. В них имеются все три оболочки.  
В пренатальный период онтогенеза в развитии венозных сосудов можно выделить несколько этапов: формирование первичной сети отводящих сосудов, частичная редукция первичных венозных сосудов и формирование магистральных вен, подключение магистральных вен к отводящим сосудам внутриорганного кровяного русла.  
На ранних этапах развития по строения нельзя отличить развивающиеся  артерии и вены. К моменту рождения ребенка диаметр одноименных  артерий и вен примерно одинаковый.  
  
 
 
1 – клапан, 2 – эндотелий, 3 – внтуренняя оболочка, 4 – средняя оболочка, 5 – наружная оболочка. 
  
В процессе формирования венозных сосудов происходит прогрессирующее нарастание клеточных элементов и волокнистого компонента, представленного коллагеновыми и эластическими волокнами. Дифференцировке мышечных элементов стенки вен предшествует пролиферация развивающихся мезенхимных клеток.  В процессе развития первой поялвяется мышечная оболчка, численность ГМК которой возрастает путем их пролиферации. Миоциты постепенно сближаются и располагаются циркулярно по отношению к длинной оси сосуда. Клапаны в венах начинают появляться на 4ом месяце внутриутробного развития человека.  
После рождения процессы становления  ангиоархитектоники сосудов продолжаются.  
Возрастные  изменения сосудов. 
После 40 лет количество эластина в аорте снижается, изменяется его  аминокислотный состав. Это играет очень большую роль в накоплении холестерина и его эстеров.  В стенке орты и артерий обнаруживаются деструктивные процессы, выражающиеся, прежде всего в изменениях эластических компонентов – фрагментация, гомогенизация, распад. При старении наблюдается прежде всего полиморфизм эндотелия, клетки приобретают самую различную форму. На поверхности клеток увеличивается количество разнообразных выростов, в цитоплазме появляются пучки микрофиламентов, увеличивается количество пиноцитозных пузырьков, накапливаются ГАГ. После 60 лет во внутренней оболочек всех артерий обнаруживаются очаговые утолщения. В наружне оболочки появляются пучки ГМК, лежащие продольно, между которыми обнаруживаются коллагеновые волокна.  
Заключение. 
Структура сосудов усложняется  в соответствии с региональными  условиями гемодинамики. Помимо эндотелия, в составе стенок сосудов начинают развиваться и другие ткани, производные мезенхимы. В течение всей жизни происходит непрерывная перестройка сосудистой системы в связи с изменением условия их функционирования. Вследствие разрастания соединительнотканных элементов стенка сосудов со временем утолщается, уплотняется, происходит атрофия клеток средней оболочки и наложение известковых элементов.  С возрастом так  же наблюдается изменение стенок вен и лимфатических сосудов, что приводит к их варикозному расширению.  
  
  
  
  
  
  
  
  
  
  
Список  использованной литературы: 
1. Гистология, цитология  и эмбриология: учеб. для мед. вузов, С.Л. Кузнецов, Н.Н. Мушкамбаров. - М.: Медицинское информационное агентство, 2007.  
2. Гистология, учебник под  редакцией Афанасьева Ю.И., Кузнецова  С.Л., Юриной Н.А. М.: Медицина, - 2004.  
3. Руководство по гистологии, т.1 и 2, под редакцией Р.К.Данилова, В.Л. Быкова, Одинцова И.А. СпецЛит, Санкт-Петербург, 2001.  
4.Основы цитологии, эмбриологии и общей гистологии. Мяделец О.Д. М.: "Мед.книга", Нижний Новгород. Изд. НГМА. - 2002.  
5. Цитология и общая гистология. Быков В.Л., СОТИС, СПб., 2000.  
6.  Гистология сердечно –  сосудистой системы Д.Х. Рыбалкина  Учебно – методическое пособие,  Караганда, 2010. 
 


Информация о работе Строение стенки сердца и сосудов