Альтернативные виды топлива

Автор работы: Пользователь скрыл имя, 01 Июля 2014 в 09:10, реферат

Описание работы

Топливо и смазочные материалы широко используются во всех отраслях народного хозяйства. Одним из основных потребителей нефтепродуктов, вырабатываемых в стране, является сельское хозяйство, оснащенное большим количеством тракторов, автомобилей, комбайнов и других сельскохозяйственных машин.
Основной целью изучения дисциплины «Топливо и смазочные материалы» является овладение знаниями об эксплуатационных свойствах, количестве и рациональном применении в тракторах, автомобилях и сельскохозяйственной технике топлива, масел, смазок и специальных жидкостей.

Содержание работы

Введение
Глава 1. Автомобильные топлива
1.1. Бензины
1.2. Дизельные топлива
1.3. Газообразные топлива
Глава 2. Альтернативные виды топлива
2.1 Природный газ
2.2 Газовый конденсат
2.3 Диметилэфир
2.4 Шахтный метан
2.5 Этанол и метанол
2.6 Синтетический бензин
2.7 Электрическая энергия
2.8 Топливные элементы
2.9 Биодизельное топливо
2.10 Воздух
2.11 Биогаз
2.12 Отработанное масло
2.13 Водород как альтернативное топливо
2.14 Спирты
2.15 Дизель и спирт
2.16 Метанол
2.17 Диметоксиметан (метилаль)
Заключение
Литература

Файлы: 1 файл

Бензин.docx

— 43.22 Кб (Скачать файл)

Содержание

Введение

Глава 1. Автомобильные топлива

1.1. Бензины

1.2. Дизельные топлива

1.3. Газообразные топлива

Глава 2. Альтернативные виды топлива

2.1 Природный газ

2.2 Газовый конденсат

2.3 Диметилэфир

2.4 Шахтный метан

2.5 Этанол и метанол

2.6 Синтетический бензин

2.7 Электрическая энергия

2.8 Топливные элементы

2.9 Биодизельное топливо

2.10 Воздух

2.11 Биогаз

2.12 Отработанное масло

2.13 Водород как альтернативное топливо

2.14 Спирты

2.15 Дизель и спирт

2.16 Метанол

2.17 Диметоксиметан (метилаль)

Заключение

Литература

 

 

 

 

 

ВВЕДЕНИЕ

Топливо и смазочные материалы широко используются во всех отраслях народного хозяйства. Одним из основных потребителей нефтепродуктов, вырабатываемых в стране, является сельское хозяйство, оснащенное большим количеством тракторов, автомобилей, комбайнов и других сельскохозяйственных машин.

Основной целью изучения дисциплины «Топливо и смазочные материалы» является овладение знаниями об эксплуатационных свойствах, количестве и рациональном применении в тракторах, автомобилях и сельскохозяйственной технике топлива, масел, смазок и специальных жидкостей.

Следует всегда помнить, что одним из основных видов расходов при работе тракторов и автомобилей являются расходы на горюче-смазочные материалы. Качество применяемых горюче-смазочных материалов должно соответствовать особенностям машин. Неправильно подобранные топливо и смазочные материалы приводят к перерасходу нефтепродуктов, а главное, снижают долговечность, надежность, эффективность работы машин и механизмов, иногда приводят к аварийным поломкам.

Глава I . АВТОМОБИЛЬНЫЕ ТОПЛИВА

1.1. Бензины 

Основные виды топлива для автомобилей - продукты переработки нефти - бензины и дизельные топлива. Они представляют собой смеси углеводородов и присадок, предназначенных для улучшения их эксплуатационных свойств. В состав бензинов входят углеводороды, выкипающие при температуре от 35 до 200 "С, а в состав дизельных топлив - углеводороды, выкипающие в пределах 180...360 "С.

Бензины в силу своих физико-химических свойств применяются в двигателях с принудительным зажиганием (от искры). Более тяжелые дизельные топлива вследствие лучшей самовоспламеняемости применяются в двигателях с воспламенением от сжатия, т.е. дизелях.

К автомобильным бензинам предъявляются следующие требования:

· бесперебойная подача бензина в систему питания двигателя;

· образование топливовоздушной смеси требуемого состава;

· нормальное (без детонации) и полное сгорание смеси в двигателях;

· обеспечение быстрого и надежного пуска двигателя при различных температурах окружающего воздуха;

· отсутствие коррозии и коррозионных износов;

· минимальное образование отложений во впускном и выпускном трактах, камере сгорания;

· сохранение качества при хранении и транспортировке.

Для выполнения этих требований бензины должны обладать рядом свойств. Рассмотрим наиболее важные из них. Бензин, подаваемый в систему питания смешивается с воздухом и образует топливовоздушную смесь. Для полного сгорания необходимо обеспечить однородность смеси с определенным соотношением паров бензина и воздуха. На протекание процессов смесеобразования влияют следующие физико-химические свойства. Плотность топлива - при +20 "С должна составлять 690...750 кг/м . При низкой плотности поплавок карбюратора тонет и бензин свободно вытекает из распылителя, переобогащая смесь. Плотность бензина со снижением температуры на каждые 10 "С возрастает примерно на 1%.

Вязкость - с ее увеличением затрудняется протекание топлива через жиклеры, что ведет к обеднению смеси. Вязкость в значительной степени зависит от температуры. При изменении температуры от +40 до —40 °С расход бензина через жиклер меняется на 20...30%.

Испаряемость - способность переходить из жидкого состояния в газообразное. Автомобильные бензины должны обладать такой испаряемостью, чтобы обеспечивались легкий пуск двигателя (особенно зимой), его быстрый прогрев, полное сгорание топлива, а также исключалось образование паровых пробок в топливной системе.

Давление насыщенных паров - чем выше давление паров при испарении топлива в замкнутом пространстве, тем интенсивнее процесс их конденсации. Стандартом ограничивается верхний предел давления паров летом - до 670 ГПа и зимой - от 670 до 930 ГПа. Бензины с более высоким давлением склонны к образованию паровых пробок, при их использовании снижается наполнение цилиндров и теряется мощность двигателя, увеличиваются потери от испарения при хранении в баках автомобилей и на складах.

Низкотемпературные свойства - характеризуют работоспособность топливоподающей системы зимой. При низких температурах происходит выпадение кристаллов льда в бензине и обледенение деталей карбюратора. В бензине в растворенном состоянии находится несколько сотых долей процента воды. С понижением температуры растворимость воды в бензине падает, и она образует кристаллы льда, которые нарушают подачу бензина в двигатель.

Сгорание бензина . Под "сгоранием" применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов топлива с кислородом воздуха с выделением значительного количества тепла. Температура паров при горении достигает 1500...2400 °С.

Теплота сгорания (теплотворная способность) - количество тепла, которое выделяется при полном сгорании 1 кг жидкого или твердого и м3 газообразного топлива (табл. 17.1).

Таблица 1.1 Теплота сгорания различных топлив

Топливо 

Теплота сгорания, кДж/кг

 

Бензин

 

Дизельное топливо

 

Спирт этиловый 

44000

 

42700

 

26000

 

 

От теплоты сгорания зависит топливная экономичность: чем выше теплота, тем меньше топлива необходимо для м смеси. Нормальное и детонационное сгорание. При нормальном сгорании процесс протекает плавно с почти полным окислением топлива и скоростью распространения пламени 10...40 м/с. Когда скорость распространения пламени возрастает и достигает 1500...2000 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости движения пламени и возникновением ударной волны.

Детонация вызывается самовоспламенением наиболее удаленной от запальной свечи части бензино-воздушной смеси, горение которой приобретает взрывной характер. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. Внешне детонация проявляется в появлении звонких металлических стуков - результата многократных отражений от стенок камеры сгорания образующихся ударных волн. Возникновению детонации способствует повышение степени сжатия, увеличение угла опережения зажигания, повышенная температура окружающего воздуха и его низкая влажность, особенности конструкции камеры сгорания. Вероятность детонационного сгорания топлива возрастает при наличии нагара в камере сгорания и по мере ухудшения технического состояния двигателя. В результате детонации снижаются экономические показатели двигателя, уменьшается его мощность, ухудшаются токсические показатели отработавших газов.

Бездетонационная работа двигателя достигается применением бензина с соответствующей детонационной скоростью. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименее стойки к детонации нормальные парафиновые углеводороды, наиболее - ароматические. Остальные углеводороды, входящие в состав бензинов, по детонационной стойкости занимают промежуточное положение. Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью, которая характеризуется октановым числом (04).

04 - это условный показатель детонационной  стойкости бензина, численно равный  процентному содержанию (по объему) изооктана в смеси с нормальным  гептаном, равноценной по детонагщонной  стойкости испытуемому топливу.

Для любого бензина октановое число определяют путем подбора смеси из двух эталонных углеводородов (нормального гептана с 04=0 и изооктана с 04=100), которая по детонационным свойствам эквивалентна испытуемому бензину. Процентное содержание в этой смеси изооктана принимают за 04 бензина.

Определение 04 производится на специальных моторных установках. Существуют два метода определения 04 - исследовательский (04И - октановое число по исследовательскому методу) и моторный (04М - октановое число по моторному методу). Моторный метод лучше характеризует антидетонационные свойства бензина в условиях форсированной работы двигателя и его высокой теплонапряженности, а исследовательский - при эксплуатации в условиях города, когда работа двигателя связана с относительно невысокими скоростями, частыми остановками и меньшей теплонапряженностью.

Наиболее важным конструктивным фактором, определяющим требования двигателя к октановому числу, является степень сжатия. Повышение степени сжатия двигателей автомобилей позволяет улучшить их технико-экономические и эксплуатационные показатели. При этом возрастает мощность и снижается удельный расход топлива. Однако с увеличением степени сжатия необходимо повышать октановое число бензина. Поэтому важнейшим условием бездетонационной работы двигателей является соответствие требований к детонационной стойкости двигателей октановому числу применяемых бензинов.

В топлива, детонационная стойкость которых не соответствуют требованиям, добавляют высокооктановые компоненты (бензол, этиловый спирт) или антидетонаторы.

Антидетонаторы. Несколько десятилетий применяют тетраэтилсвинец (ТЭС) в сочетании с веществами, обеспечивающими отсутствие отложений окислов свинца в камере сгорания, так называемыми выносителями. Например, в 1 кг бензина А-76 содержится 0,24 г ТЭС.

В чистом виде ТЭС не применяют, а используют этиловую жидкость (ЭЖ), состоящую из ТЭС, выносителей и красителей. ТЭС ядовит, поэтому искусственное окрашивание бензина, предупреждает об опасности. Добавлением ЭЖ увеличивают 04 на 8...12 единиц. Главный недостаток ТЭС - ядовитость.

 

Ведутся исследования по созданию антидетонаторов на основе марганца. Один из них - циклопентадиенилтрикарбонил марганца -широко не применяется, так как отсутствует эффективный выноситель для него.

1.2 Дизельные топлива 

Дизельные двигатели в силу особенностей рабочего процесса на 25...30% экономичнее бензиновых двигателей, что и предопределило их широкое применение. В настоящие время они устанавливается на большинство грузовых автомобилей и автобусов, а также на часть легковых.

Эксплуатационные требования к дизельным топливам (ДТ):

•бесперебойная подача топлива в систему питания двигателя;

•обеспечение хорошего смесеобразования;

•отсутствие коррозии и коррозионных износов;

•минимальное образование отложений в выпускном тракте, камере сгорания, на игле и распылителе форсунки;

•сохранение качества при хранении и транспортировке.

Наиболее важными эксплуатационными свойствами дизельного топлива являются его испаряемость, воспламеняемость и низкотемпературные свойства.

Испаряемость топлива определяется составом. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. Поэтому пусковые свойства дизельных топлив для автомобилей в некоторой степени определяет температура выкипания 50% топлива. Температура выкипания 96% топлива регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов.

Воспламеняемость ДТ характеризует его способность к самовоспламенению в камере сгорания. Это свойство в значительной мере определяет подготовительную фазу процесса сгорания - период задержки воспламенения, который в свою очередь складывается из времени, затрачиваемого на распад топливной струи на капли, частичное их испарение и смешение паров потлива с воздухом (физическая составляющая), а также времени, необходимого для завершения предпламенных реакций и формирование очагов самовоспламенения (химическая составляющая).

Физическая составляющая времени задержки воспламенения зависит от конструктивных особенностей двигателя, а химическая - от свойств применяемого топлива. Длительность периода задержки воспламенения существенно влияет на последующее течение всего процесса сгорания. При большой длительности периода задержки воспламенения увеличивается количество топлива, химически подготовленного для самовоспламенения. Сгорание топливовоздушной смеси в этом случае происходит с большей скоростью, что сопровождается резким нарастанием давления в камере сгорания. В этом случае дизель работает «жестко».

«Жесткость» работы оценивают по нарастанию давления на 1° поворота коленчатого вала (KB). Двигатель работает мягко при нарастании давления 2,5...5,0 кгс/см' на 1" поворота KB, жестко - при 6...9 кгс/см , очень жестко - при нарастании давления более 9 кгс/см2. При жесткой работе поршень подвергается повышенному ударному воздействию. Это ведет к повышенному износу деталей кривошипно-шатунного механизма, снижает экономичность двигателя.

Склонность ДТ к самовоспламенению оценивают по цетановому числу (ЦЧ). ЦЧ - это условный, показатель воспламеняемости дизельного топлива, численно равный объемному проценту цетана в эталонной смеси с альфаметилнафталином, которая равноценна, по воспламеняемости испытуемому топливу. Для определения ЦЧ составляют эталонные смеси. В их состав входят цетан и альфаметилнафталин. Склонность цетана к самовоспламенению принимают за 100 единиц, а альфаметилнафталина -за 0 единиц. Цетановое число смеси, составленной из них, численно равно процентному содержанию (по объему) цетана. Оценку самовоспламеняемости ДТ производят аналогично методу оценки детонационной стойкости бензинов. Образец сопоставляется с эталонными топливами на одноцилиндровых двигателях ИТ-9.

Информация о работе Альтернативные виды топлива