Автор работы: Пользователь скрыл имя, 13 Января 2014 в 16:25, лекция
Смазка в технике, термин, имеющий различные значения: режимы трения деталей машин (смазывание); материалы, облегчающие трение и процессы; обработки металлов резанием и давлением; подача смазочных материалов в узлы трения; материалы, служащие для защиты поверхностей от коррозии и уплотнения соединений деталей машин.
Большинство М. н. должно обладать также малой зольностью, высокой стойкостью к окислению. Эти показатели связаны с противоизносными, антинагарными и коррозионными свойствами масел.
Для использования в
В ряде случаев вместо
М. н. используются синтетическ
Моторные масла, группа масел, используемых для смазывания двигателей внутреннего сгорания (поршневых и реактивных); относятся к разряду смазочных масел (см. Масла нефтяные). Практически все М. м. являются продуктами переработки нефти и только некоторые сорта авиационных масел — синтетические масла. Все М. м., за исключением некоторых авиационных, содержат моющие, противоизносные и антиокислительные присадки. Северные, зимние и всесезонные М. м., получаемые на маловязких основах, содержат также вязкостные загущающие присадки и депрессаторы, понижающие температуру застывания масел.
В зависимости от назначения
М. м. подразделяются на
В зависимости от
Авиационные М. м.
В связи с развитием
Группы автомобильных и
Группа масел |
Тип двигателей | |
А |
Нефорсированные карбюраторные и дизельные | |
Б |
Б1 |
Maлофорсированные |
Б2 |
Maлофорсированные дизельные | |
В |
В1 |
Cpeднефорсированные карбюраторные |
В2 |
Среднефорсированные дизельные | |
Г |
Г1 |
Высокофорсированные карбюраторные |
Г2 |
Bысокофорсированные дизельные | |
Д |
Высокофорсированные дизельные, работающие в тяжёлых условиях | |
Е |
Малооборотные дизельные, работающие на тяжёлом топливе с содержанием серы до 3,5% |
Реактивные масла, группа авиационных моторных масел, используемых для смазки турбореактивных и турбовинтовых двигателей. В реактивных двигателях применяют как масла нефтяные, так и синтетические масла.
В подшипниках турбин реактивных двигателей масла работают при очень высоких нагрузках и температурах. Поэтому важнейшая эксплуатационная характеристика Р. м. — хорошее смазочное действие при сравнительно малой вязкости (3—7 сст при 100 °С), высокой стабильности против окисления и низкой температуре застывания (до —60 °С). Подавляющее большинство Р. м. содержат присадки.
Промышленность СССР вырабатывает более десяти видов Р. м., используемых в турбореактивных и турбовинтовых двигателях разных конструкций.
Трансмиссионные масла, нефтяные масла (иногда синтетические) с противозадирными присадками (сераорганическими соединениями, хлорсодержащими органическими соединениями и др.). Используются в зубчатых зацеплениях коробки передач, зацеплениях картера заднего моста и рулевого управления транспортных машин для предотвращения задира, уменьшения износа трущихся поверхностей и отведения от них тепла.
Индустриальные масла, нефтяные масла, используемые в промышленности и быту для смазки механизмов (машин, приборов и т. п.). Для производства И. м. применяют бакинские, эмбенские, восточные и др. виды нефти. И. м. иногда содержат в качестве добавок растительные масла, например касторовое, горчичное, сурепное, а также противоокислительные, загущающие, антикоррозийные и др. присадки, улучшающие эксплуатационные свойства масел. Ассортимент И. м. постоянно изменяется и пополняется новыми марками, в частности всё большую роль начинают играть синтетические масла, например силиконовые, полиэфирные, фторуглеводородные и т. п.
В зависимости от вязкости И. м. под разделяют на лёгкие, средние и тяжёлые. Лёгкие И. м. [вязкость при 50 °С 5—10 сст (1 сст = 10-6 м2/сек), tзаст до —25 °C] используют для смазки высокоскоростных малонагруженных механизмов. В эту группу входят: масла Л (велосит) и Т (вазелиновое), применяемые для смазки прядильных и крутильных машин в текстильной промышленности, шпинделей металлообрабатывающих станков и маломощных высокооборотных моторов; сепараторное масло Л для смазки лёгких сепараторов; швейное масло для швейных, вязальных и трикотажных машин; приборное масло МВП (tзаст —60 °С) для смазки контрольно-измерительных приборов и др. Средние И. м. (вязкость при 50 °С 10—50 сст, tзаст до —30 °С) используют для смазки механизмов, работающих при средних режимах скоростей и нагрузок. В эту группу входят веретённые и машинные масла, а также сепараторное масло Т и телеграфное масло. Эти масла применяются во многих отраслях промышленности (лёгкой, металлообрабатывающей и др.); в частности, их используют для смазывания подшипников маломощных электродвигателей и гидросистем металлообрабатывающих станков. Тяжёлые И. м. (вязкость при 100 °С 10—30 сст, сравнительно высокие температуры застывания) применяют для смазывания промышленного оборудования, работающего при малых скоростях и больших нагрузках, например кузнечно-прессового оборудования, червячных и зубчатых передач и т. п.
Помимо указанных трёх групп, к И. м. относят также приборные масла для смазки контрольно-измерительной аппаратуры, обладающие сравнительно высокой вязкостью (10—20 сст при 50 °С) и низкими температурами застывания (до —70 °С); часовые масла (вязкость при 50 °С 20—30 сст, tзаст до —20 °С); турбинные масла для смазки подшипников и вспомогательных частей водяных и паровых турбин (вязкость при 50 °С 20—50 сст, tзаст до —15 °С), предназначенные для работы в условиях циркуляционной смазки и обладающие высокой противоокислительной и деэмульгирующей способностью; компрессорные масла для смазки поршневых и ротационных компрессоров и воздуходувок, характеризующиеся большой стабильностью, высокой температурой вспышки (210—270 °С) и высокой вязкостью (10—20 сст при 100 °С). К последней группе примыкают рефрижераторные масла для смазки компрессоров холодильных машин: для аммиачных и углекислотных компрессоров применяют масло ХА (фригус), для фреоновых компрессоров — масла ХФ-12 (tзаст —40 °С) и ХФ-22 (tзаст —60°C). Особую группу И. м. образуют гидравлические масла, применяемые в качестве рабочих жидкостей в различных гидросистемах, например в тормозных системах автомашин, гидроприводах станков. Все они имеют низкие (до —70°C) температуры застывания, высокую степень очистки и устойчивы к окислению. К этой же группе относят масла, применяемые в качестве рабочего тела в форвакуумных и высоковакуумных пароструйных насосах.
Цилиндровые масла, малоочищенные масла нефтяные, используемые для смазывания цилиндров, золотников, штоков и клапанов паровых машин. Некоторые Ц. м. применяют в судовых крейцкопфных дизелях. Ц. м. обладают хорошей смазывающей способностью, не склонны к нагарообразованию, предотвращают коррозию металлических поверхностей. Различают Ц. м. для машин, работающих с насыщенным и с перегретым паром. Ц. м. имеют сравнительно высокую вязкость (до 70×10-6 м2/сек при 100 °С), обусловливающую их герметизирующую способность и стойкость к смыванию конденсатом или влажным паром.
Электроизоляционные масла, высокоочищенные масла нефтяные, реже синтетические и растительные масла, используемые для изоляции и охлаждения электрических аппаратов и устройств: трансформаторов (см. Трансформаторные масла), конденсаторов, кабелей и др. Э. м. отличаются высокой электрической прочностью (до 25 Мв/м) и имеют электрическое сопротивление порядка 1010—1012 ом·см. В 70-е гг. 20 в. мировое производство нефтяных Э. м. составляет около 1 млн. т, а синтетических — около 50 тыс. т в год.
Технологические масла, группа смазочных материалов, используемых при прокатке, прессовании, волочении, свободной ковке, объёмной и листовой штамповке чёрных и цветных металлов с целью облегчения их деформации и улучшения качества обрабатываемой поверхности. К Т. м. относят также масла, применяемые при закалке стали и композиции, которыми смазывают литейные формы. В качестве Т. м. применяют главным образом смеси нефтяных масел, животных и растительных жиров, мыл на основе высших жирных кислот. В их состав включают противозадирные, антиокислительные присадки, антифрикционные добавки (графит, дисульфид молибдена, тальк и др.), эмульгаторы и др. поверхностно-активные вещества.
Белые масла, нефтяные масла, бесцветные маслянистые, прозрачные жидкости без запаха и вкуса. Б. м. получают из дистиллатов высококачественных масляных нефтей путём очистки их дымящей серной кислотой или серным ангидридом с последующей нейтрализацией и обработкой отбеливающими землями. Известны 2 вида Б. м.: медицинское и парфюмерное. Первое имеет температуру вспышки 185°С, вязкость 28—36 мн•сек/м2 (50°С); применяется при изготовлении мазей как растворитель лекарств (камфора, ртутные соединения), для смягчения и защиты кожи и др. Парфюмерное масло имеет температуру вспышки 160°С, вязкость 16—24 мн • сек/м2 (50°С); идёт для получения кремов, помад и других продуктов парфюмерного производства.
Пластичные смазки, консистентные смазки, смазочные материалы, проявляющие в зависимости от нагрузки свойства жидкости или твёрдого тела. При малых нагрузках они сохраняют свою форму, не стекают с вертикальных поверхностей и удерживаются в негерметизированных узлах трения. П. с. состоят из жидкого масла, твёрдого загустителя, присадок и добавок. Частицы загустителя в составе П. с., имеющие коллоидные размеры, образуют структурный каркас, в ячейках которого удерживается дисперсионная среда (масло). Благодаря этому П. с. начинают деформироваться подобно аномально-вязкой жидкости только при нагрузках, превышающих предел прочности П. с. (обычно 0,1—2 кн/м2, или 1—20 гс/см2). Сразу после прекращения деформирования связи структурного каркаса восстанавливаются и смазка вновь приобретает свойства твёрдого тела. Это позволяет упростить конструкцию и снизить вес узлов трения, предотвращает загрязнение окружающей среды. Сроки смены П. с. больше, чем смазочных материалов. В современных механизмах П. с. часто не меняют в течение всего срока их службы. Промышленность СССР в 1974 выпускала около 150 сортов П. с. Их мировое производство составляет около 1 млн. т в год (3,5% выпуска всех смазочных материалов).
П. с. получают, вводя в нефтяные, реже синтетические, масла 5—30 (обычно 10—20) % твёрдого загустителя. Процесс производства периодический. В варочных котлах готовят расплав загустителя в масле. При охлаждении загуститель кристаллизуется в виде сетки мелких волокон. Загустители с температурой плавления выше 200—300 °С диспергируют в масле при помощи гомогенизаторов, например коллоидных мельниц. При изготовлении в состав некоторых П. с. вводят присадки (антиокислительные, антикоррозионные, противозадирные и др.) или твёрдые добавки (антифрикционные, герметизирующие).
П. с. классифицируют по типу загустителя и по области применения. Наиболее распространены мыльные П. с., загущенные кальциевыми, литиевыми, натриевыми мылами высших жирных кислот. Гидратированные кальциевые П. с. (солидолы) работоспособны до 60—80 °С, натриевые до 110 °С, литиевые и комплексные кальциевые до 120—140 °С. На долю углеводородных П. с., загущаемых парафином и церезином, приходится 10—15% всего выпуска П. с. Они имеют низкую температуру плавления (50—65 °С) и используются в основном для консервации металлоизделий.
В зависимости от назначения
и области применения
Синтетические масла, жидкости, применяемые главным образом в качестве смазочных материалов, теплоносителей, гидравлических жидкостей. На основе С. м. готовят некоторые пластичные смазки. В качестве С. м. используют синтетические углеводороды, эфиры (в частности, эфиры фосфорной кислоты), полиорганосилоксаны, галогениды углерода, полиалкиленгликоли и др.
Синтетические углеводороды
получают полимеризацией
Эфиры получают главным образом взаимодействием одно- и двухосновных кислот с одно- и многоатомными спиртами. Наиболее часто используют эфиры сложные типа диоктилсебацината или пентаэритритовые эфиры одноосновных кислот. Они имеют хорошие вязкостно-температурные характеристики, низкую испаряемость, повышенную, по сравнению с маслами нефтяными, термическая и химическая стабильность. Применяются в авиационных двигателях, в качестве трансмиссионных масел и гидравлических жидкостей. Особо устойчивы к высоким температурам (до 300—400 °С) и радиации полифениловые эфиры и эфиры a-дигидроперфторспиртов. В качестве негорючих гидравлических жидкостей используют эфиры фосфорной кислоты. Все эфиры имеют хорошие противоизносные свойства.