Анализ временных рядов

Автор работы: Пользователь скрыл имя, 17 Апреля 2015 в 11:45, реферат

Описание работы

Почти в каждой области встречаются явления, которые интересно и важно изучать в их развитии и изменении во времени. В повседневной жизни могут представлять интерес, например, метеорологические условия, цены на тот или иной товар, те или иные характеристики состояния здоровья индивидуума и т. д. Все они изменяются во времени. С течением времени изменяются деловая активность, режим протекания того или иного производственного процесса, глубина сна человека, восприятие телевизионной программы. Совокупность измерений какой-либо одной характеристики подобного рода в течение некоторого периода времени представляют собой временной ряд.
Совокупность существующих методов анализа таких рядов наблюдений называется анализом временных рядов.
Основной чертой, выделяющей анализ временных рядов среди других видов статистического анализа, является существенность порядка, в котором производятся наблюдения. Если во многих задачах наблюдения статистически независимы, то во временных рядах они, как правило, зависимы, и характер этой зависимости может определяться положением наблюдений в последовательности. Природа ряда и структура порождающего ряд процесса могут предопределять порядок образования последовательности.

Содержание работы

ВВЕДЕНИЕ
ГЛАВА 1. АНАЛИЗ ВРЕМЕННЫХ РЯДОВ
1.1 ВРЕМЕННОЙ РЯД И ЕГО ОСНОВНЫЕ ЭЛЕМЕНТЫ
1.2 АВТОКОРРЕЛЯЦИЯ УРОВНЕЙ ВРЕМЕННОГО РЯДА И ВЫЯВЛЕНИЕ ЕГО СТРУКТУРЫ
1.3 МОДЕЛИРОВАНИЕ ТЕНДЕНЦИИ ВРЕМЕННОГО РЯДА
1.4 МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
1.5 ПРИВЕДЕНИЕ УРАВНЕНИЯ ТРЕНДА К ЛИНЕЙНОМУ ВИДУ
1.6 ОЦЕНКА ПАРАМЕТРОВ УРАВНЕНИЯ РЕГРЕССИИ
1.7 АДДИТИВНАЯ И МУЛЬТИПЛИКАТИВНАЯ МОДЕЛИ ВРЕМЕННОГО РЯДА
1.8 СТАЦИОНАРНЫЕ ВРЕМЕННЫЕ РЯДЫ
1.9 ПРИМЕНЕНИЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ К СТАЦИОНАРНОМУ ВРЕМЕННОМУ РЯДУ
1.10 АВТОКОРРЕЛЯЦИЯ ОСТАТКОВ. КРИТЕРИЙ ДАРБИНА- УОТСОНА

Файлы: 1 файл

kazedu_97790.docx

— 79.11 Кб (Скачать файл)

3) Если уровни изменяются с приблизительно постоянным относительным приростом, то выравнивание производится по показательной (экспонентной функции):

 

yt = a0 a1t.

 

В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путём сравнения коэффициентов автокорреляции первого порядка, рассчитанным по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни yt и y t –1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

При обработке информации на компьютере выбор вида уравнения тенденции обычно осуществляется экспериментальным методом , то есть путём сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Имеют место отклонения фактических данных от теоретических (у – уt). Величина этих отклонений и лежит в основе расчёта остаточной дисперсии:

 

 (1.3.1)

 

Чем меньше величина остаточной дисперсии, тем лучше данное уравнение подходит к исходным данным.

 

1.4 Метод наименьших квадратов

 

Для нахождения аналитического уравнения, по которому производится выравнивание уровней временного ряда, применяют различные способы. Один из таких способов – метод наименьших квадратов - основан на требовании о том, чтобы сумма квадратов отклонений фактических данных от выровненных была наименьшей:

 

(у1 – у1)2 + (у2 – у2)2 + . . . + (уn – yn)2 = S.


 

S должно быть наименьшим (минимальным)

Принцип, положенный в основу метода наименьших квадратов, может быть записан в сжатом математическом виде следующим образом:

 

∑ (y – yt)2 = min. (1.4.1)

 

Из курса математического анализа известно, что при нахождении минимума функции нужно найти частные производные и приравнять их к нулю. Найдём минимум функции, используя уравнение параболы.

Имеем:

 

∑ (y – yt )2 = S; (1.4.2)

заменяем:

 

yt = a0 + a1 t + a2 t 2

 

и получаем:

∑( y - a0 - a1 t - a2 t 2 )2 = S.

 

Находим частные производные функции S сначала по параметру а0, а затем по а1 и а2, и приравниваем их к нулю.

 

;

 

; (1.4.3)

 

.

 

Преобразовывая, получаем:

 

  ;


  ; (1.4.4)

  .

 

Полученная система называется системой нормальных уравнений для нахождения параметров а0 , а1 и а2 при выравнивании по параболе второго порядка.

При выравнивании по показательной функции yt = a0 a1t параметры а0 и а1 определяются по методу наименьших квадратов отклонений логарифмов путём решения системы нормальных уравнений:

 

  ; (1.4.5)


  .

1.5 Приведение уравнения тренда к линейному виду

 

Если тренд представляет собой нелинейную функцию, то методы линейного регрессионного анализа для оценки его параметров неприменимы. Но к некоторым нелинейным функциям мы можем применить такие преобразования, которые приведут нас к линейному уравнению.

Если наш тренд представлен степенной линией регрессии, то есть он имеет вид:

 

yt = a0ta1, (1.5.1)

 

то логарифмируя обе части равенства, получим:

 

ln yt = ln a0 + a1 ln t.

 

Отсюда видно, что, введя новые переменные

 

z = ln yt , x = ln t,

 

мы получим уравнение вида

 

z = b0 +a1x,

 

где b0 = ln a0. Это обычное линейное уравнение.

Если линия тренда – парабола второго порядка

 

yt = a0 + a1 t + a2 t 2 ,

 

то заменой вида:

 

х1 = t, x2 = t 2,

 

мы получим линейную функцию двух переменных:

 

yt = a0 + a1 х1 + a2 х2 .

 

Оценку параметров такой функции можно провести методами линейного регрессионного анализа для множественной регрессии. [5, c.29]

Далее приведём основные понятия регрессионного анализа, которые используются для оценки параметров.

 

1.6 Оценка параметров уравнения регрессии

 

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции ryt. Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

 

 , (1.6.1)

 

или


. (1.6.2)

 

Как известно, линейный коэффициент корреляции находится в пределах:

 

-1 ≤  ryt ≤ 1.

 

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в её линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю ещё не означает отсутствия связи между признаками.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции ryt2, называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака уt, объясняемую регрессией, в общей дисперсии результативного признака:

 

 (1.6.3)

 

где

 

 

 

общая дисперсия результативного признака у;

 

 

остаточная дисперсия, определяемая, исходя из уравнения регрессии

 

уt = f(t).

Соответственно величина 1 – r 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтённых в модели факторов.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции R:

 

 (1.6.4)

 

Иначе, индекс корреляции можно выразить как

 

 

Величина данного показателя находится в границах:

 

0 ≤ R ≤ 1,

 

чем ближе к единице, тем теснее связь рассматриваемых признаков, тем более надёжно найденное уравнение регрессии.

Парабола второго порядка, как и полином более высокого порядка, при лианеризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадёт с индексом корреляции.

Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с зависимой переменной. В этом случае линейный коэффициент корреляции по преобразованным значениям признаков даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции. Так, для степенной функции ух = ахb после перехода к логарифмически линейному уравнению lny = lna + blnx может быть найден линейный коэффициент корреляции не для фактических значений переменных х и у, а для их логарифмов, то есть rlnylnx. Соответственно квадрат его значения будет характеризовать отношение факторной суммы квадратов отклонений к общей, но не для у, а для его логарифмов:

 

.

 

Между тем при расчёте индекса корреляции используются суммы квадратов отклонений признака у, а не их логарифмов. С этой целью определяются теоретические значения результативного признака, то есть , как антилогарифм рассчитанной по уравнению величины и остаточная сумма квадратов как . Индекс корреляции определяется по формуле

 

 

В знаменателе расчёта R2yx участвует общая сумма квадратов отклонений фактических значений у от их средней величины, а в расчёте r2lnx lny участвует . Соответственно различаются числители и знаменатели рассматриваемых показателей:

 

- в  индексе корреляции и

- в  коэффициенте корреляции.

Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции.

Несмотря на близость значений R и r или R и r в нелинейных функциях с преобразованием значения признака у, следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, как следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию как , так и , так как , то при криволинейной зависимости для функции y=j(x) не равен для регрессии x=f(y).

Поскольку в расчёте индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится, так же как и оценка надёжности коэффициента корреляции.

Индекс корреляции используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера:

 

 

где - индекс детерминации;

n – число наблюдений;

m – число параметров при переменных х.

Величина m характеризует число степеней свободы для факторной суммы квадратов, а ( n – m - 1) – число степеней свободы для остаточной суммы квадратов.

Для степенной функции m = 1 и формула F – критерия примет тот же вид, что и при линейной зависимости:

 

 

Для параболы второй степени y = a0 + a1 x + a2 x2 +εm = 2 и

 

 (1.6.5)

 

Расчёт F-критерия можно вести и в таблице дисперсионного анализа результатов регрессии, как это было показано для линейной функции.

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации меньше индекса детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Практически, если величина разности между индексом детерминации и коэффициентом детерминации не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2 , вычисленных по одним и тем же исходным данным, через t – критерий Стьюдента:

 

 (1.6.6)

 

m |R- r| - ошибка разности между R2 и r2 , определяемая по формуле

 

 

 

Если t факт >t табл , то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически, если величина t < 2, то различия между Ryx и ryx несущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.

 

1.7 Аддитивная и мультипликативная модели временного ряда

 

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

 

 Y= T + S + E.

 

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:

 Y = T∙S∙E.

 

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.

Информация о работе Анализ временных рядов