Автор работы: Пользователь скрыл имя, 29 Апреля 2012 в 14:34, реферат
Общие положения
2. Корреляция (понятия, методика, экономический смысл)
3. Регрессия (понятия, методика, экономический смысл)
Корреляция и регрессия – это методы входящие в группу экономико-математических методов. Они используются для установления взаимосвязей между группами переменных, описывающих деятельность.
Общие положения
2. Корреляция (понятия, методика, экономический смысл)
3. Регрессия (понятия, методика, экономический смысл)
Корреляция и регрессия – это методы входящие в группу экономико-математических методов. Они используются для установления взаимосвязей между группами переменных, описывающих деятельность.
В условиях глубоких и быстрых изменений внешней среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. Математическая модель не способна к импровизации и не может приспособиться к изменениям внешней среды.
Расчет корреляций и расчет регрессий - это два последовательных этапа одного и того же анализа данных , который принято называть корреляционно-регрессионным анализом . Они выполняются в аналитическом режиме, который предназначен,
в первую очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь,
применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования , виды факторов
и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку изданных - и "выход" - фильтрованную постановку задачи и выборку. В остальном он не ограничивает методику анализа.
1. Корреляция используется для качественного анализа: отбора взаимосвязанных факторов , и выделения той части выборки , на которой теснота связи максимальна. Затем для отобранных факторов и подвыборки проводится количественный анализ: строятся регрессионные функции взаимосвязи. Они могут использоваться в
информационном конвейере . Информационный конвейер
- образует последовательность программных блоков: качество - аналог - количество - риск - цена - спрос. Каждый блок рассчитывает соответствующую группу характеристик на основе информации, получаемой с предыдущего этапа расчета или из баз данных. Результат передается следующему блоку, или же тот подключается напрямую к базе данных.
Таким образом, корреляция отражает пространственно-временную синхронность между, скажем, повышением конкурентоспособности и качества продукции и повышением
спроса на него .
Если исследователя интересует связь между двумя метрическими переменными, то используется парная корреляция. Данная корреляция характеризуется коэффициентом корреляции Пирсона.
– выборочные средние
Частный коэффициент корреляции –
мера зависимости между двумя переменными после корректировки эффектов
переменных. Коэффициент корреляции изменяется от
-1 до +1. Абсолютная величина коэффициента характеризует тесноту связи, а знак указывает на ее направление.
Парная корреляция отвечает на такие вопросы, как, например:
- Насколько сильно связан спрос с расходами?
- Связано ли восприятие качества товаров потребителями с их восприятием
цены?
Частная же корреляция – (на примере расходов на рекламу)
- Если брать зависимость спроса от затрат на рекламу, то существует ли влияние ценового фактора.
- А при изучении влияния качества и цены, существует ли эффект торговой марки.
Частная корреляция может быть полезна для выявления ложных связей.
Ни с одним из этих видов корреляции не возникает проблем, если данные измерены с помощью интервальной или относительной шкал. Но есть и неметрические переменные, которые нельзя измерить с помощью интервальной или относительной шкалы и они не подчиняются закону нормального распределения. В этих случаях используются коэффициенты Спирмена
где - сумма квадратов разностей рангов, а - число парных наблюдений.
и ранговая корреляция Кендала,
Применяется для выявления взаимосвязи между количественными или качественными показателями, если их можно ранжировать. Значения показателя X выставляют в порядке возрастания и присваивают им ранги. Ранжируют значения показателя Y и рассчитывают коэффициент корреляции Кендалла:
,
где .
— суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов Y.
— суммарное число наблюдений, следующих за текущими наблюдениями с меньшим значением рангов Y.
а сама корреляция называется неметрической. Различие этих коэффициентов в том, что коэффициент ранговой корреляции Кендала используется, когда большая часть наблюдений попадает в относительно немногочисленные категории, а коэффициент ранговой корреляции Спирмена наоборот, – когда существует множество категорий.
Пример использования корреляционного анализа на
практике :
Маркетологи, занимающиеся изучением отношения потребителей к торговым маркам, обнаружили, что для таких товаров, которые продаются с минимальным участием продавцов, отношение покупателя к рекламе служит промежуточным звеном между распознаванием брэнда и отношением к нему. Они сделали попытку узнать, что будет с этой промежуточной переменной, если товары покупаются через компьютерную сеть. Одна из компаний в Венгрии исследовала воздействие на покупки непосредственно рекламы. Маркетологи провели опрос, в ходе которого измерялись различные показатели. После этого необходимо было вычислить частный коэффициент корреляции между отношением к брэнду и доверием к нему с одновременным исключением влияния отношения к рекламе. Данный корреляционный анализ показал, что отношение к рекламе действительно высокозначимое и влияет на покупки потребителей, т.к. частный коэффициент корреляции был значительно меньше, чем парный коэффициент между доверием к брэнду и отношением к нему.
2. Регрессионный анализ – это метод установления формы и изучения связей между метрической зависимой переменной и одной или несколькими независимыми переменными.
Регрессионный анализ используют в тех случаях, когда:
- необходимо установить, реально ли есть взаимосвязь между переменными;
- необходимо установит тесноту связи зависимых и независимых переменных;
- нужно определить форму связи;
- нужно предсказать значение зависимой переменной;
- необходимо осуществлять контроль над независимыми переменными при определении вкладов конкретной переменной.
Для проведения регрессионного анализа необходимо следующее :
- Выбор одного блока , из которого берется координатный интервал , чьи данные дают зависимую переменную регрессии.
- Выбор одного или нескольких блоков, из которых аналогично берутся факторы в качестве независимых переменных регрессии. При этом необходимо, чтобы блок, дающий зависимую переменную, и все блоки, дающие независимые переменные, имели какие-либо общие координаты (обычно пространство и время), которые служат
переменными развертки и дают точки, по которым проводится регрессионная кривая или поверхность.
- Выбор типа и "степени" функций от независимых переменных, которые включаются в регрессию.
- Задание координатных интервалов переменных сравнения
, внутри которых регрессионная функция не должна значимо изменяться.
-Определяется точность предсказания. Для этого находится стандартная ошибка оценки регрессии.
Регрессия проводится последовательно с увеличением числа независимых переменных и степени регрессионной функции. При этом общесистемным оптимизатором
находится минимум среднеквадратичного отклонения точек данных от регрессионной кривой.
Для регрессионной кривой вычисляются характеристики неопределенности - показатели тесноты регрессии: кривые доверительного интервала и коэффициент детерминации. Последний может вычисляться сразу для всех комбинаций "зависимая переменная - независимая переменная".
Как и корреляция , регрессия рассчитывается для фиксированных координатных интервалов каждой переменной сравнения.
Проверяется устойчивость регрессии к смене координатного интервала на том же уровне иерархии. Так же как и корреляционный анализ, регрессионный имеет свои особенности и направленности. Для установления математической зависимости между
двумя метрическими переменными – зависимой и независимой используется парная регрессия .
ŷ = b0 + b1 · x
где ŷ — оценка условного математического ожидания y;
b0 , b1 — эмпирические коэффициенты регрессии, подлежащие определению.
Множественная регрессия используется для определения математической зависимости между двумя или больше независимыми переменными и зависимой переменной, выраженной с помощью интервальной или относительной шкал. Силу тесноты связи в данном случае измеряют с помощью коэффициента множественной детерминации (аналогично, как и при корреляции).
При пошаговой регрессии независимые переменные вводят и выводят из уравнения регрессии один за другим, чтобы выбрать меньшее их количество, которое объясняет большую часть вариации.
П арная регрессия отвечает на такие вопросы как:
- Какова зависимость между зависимыми переменными и независимыми?
- Зависит ли вариация объемов рынка от численности торгового персонала?
Множественная регрессия дает ответы на вопросы:
- Объясняется ли спрос на продукт с точки зрения цен, количества конкурентов и посредников на рынке?
- Зависит ли доля рынка от расходов на PR
-акции, рекламу и бюджета на промоакции?
- Зависит ли спрос от ценовой политики конкурентов и т.д.
Пример регрессионного анализа:
Ошеломительным примером такого анализа является пример компании Sun
Microsystems , которая обошла по продажам компанию IBM . Взяв за основу регрессионный анализ конкурентных преимуществ, компания стала лидером на рынке технологий. Регрессионный анализ проводился следующим образом: было взято три набора независимых переменных: численность специалистов в компании конкурента, расходы на рекламу и расходы на разработки. И все они использовались только благодаря проведенному ранее
бенмаркингу. Зависимой переменной являлся объем сбыта. Проведение данного анализа показало, что именно из-за численности персонала страдала компания Sun Microsystems и была в лидерах IBM . Из-за большей численности персонала в компании Sun
Microsystems возникала разобщенность на профессиональном уровне, и зачастую не было единого мнения по внедрению того или иного продукта, деньги на разработки выделялись, но большинство из разработок так и оставались разработками и не внедрялись. Напротив, в IBMменее крупной по численности
компании разработки быстро уходили на рынок и скупались практически сразу. По итогам анализа, Sun Microsystems не решилась сокращать персонал, боясь утечки информации, а разделилась на филиалы и тем самым увеличила свои продажи, и 3 года находилась на пике в лидерах.
Информация о работе Корреляционно-регрессионный анализ в ланировании