Автор работы: Пользователь скрыл имя, 02 Июня 2013 в 19:19, контрольная работа
Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью них можно сравнивать между собой различные совокупности по варьирующим признакам.
Средняя величина является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку.
Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью них можно сравнивать между собой различные совокупности по варьирующим признакам.
Средняя величина является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности. Она является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.
Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.
Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.
Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу:
Где Хмо - нижняя граница модального интервала;
iмо - величина модального интервала;
fмо - частота модального интервала;
fм - частота интервала, предшествующего модальному;
fм- частота интервала, следующего за модальным.
Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.
В случае если вариационный ряд имеет число значений вариант четное, то
расчет медианы производится по следующей формуле:
Где - варианты, находящиеся в середине ряда
В интервальном ряду медиана определяется по формуле:
где:
- величина медианного интервала;
- полусумма частот ряда;
- сумма накопленных частот, предшествующих медианному интервалу;
- частота медианного интервала.
Мода и медиана являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.
Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Также если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров и т.д., в этих случаях прибегают к моде.
Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников составила 15 тыс. руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 20 тыс. руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.
Можно сделать вывод, что средние величины, а именно мода и медиана, в статистике играют большую роль. Средние показатели широко применяются в анализе, так как именно в них находят свое проявление закономерности массовых явлений и процессов как во времени, так и в пространстве. Мода и медиана являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.
Так, чтобы охарактеризовать наиболее часто встречающуюся величину признака, применяют моду, а чтоб показать количественную границу значения варьирующего признака, которую достигла половина членов совокупности - медиану.
Таким образом, средние величины помогают изучать закономерности развития промышленности, конкретной отрасли, общества и страны в целом.
Информация о работе Понятие о моде и медиане и их использование в экономических расчетах