Применение частных производных в экономике

Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 19:07, реферат

Описание работы

Цель работы: анализ различных производственных задач с точки зрения эффективности применения для их решения аппарата производной.
Современный экономист должен хорошо владеть количественными методами анализа. К такому выводу нетрудно прийти практически с самого начала изучения экономической теории. При этом важны как знания традиционных математических курсов (математический анализ, линейная алгебра, теория вероятностей), так и знания, необходимые непосредственно в практической экономике и экономических исследованиях (математическая и экономическая статистика, теория игр, эконометрика и др.).

Файлы: 1 файл

Статья.doc

— 70.50 Кб (Скачать файл)

Применение  частных производных в экономике

 

Экономика - неотъемлемая часть нашей жизни. Мы работаем, учимся, занимаемся домашним хозяйством, но даже не подозреваем, что без экономики  всего этого могло бы и не быть. Экономические задачи помогают нам  правильно тратить ресурсы и средства.

Основная проблема, рассмотренная  в моей работе, - использование производной  в экономических целях и её роль.

Цель работы: анализ различных  производственных задач с точки  зрения эффективности применения для  их решения аппарата производной.

Современный экономист  должен хорошо владеть количественными  методами анализа. К такому выводу нетрудно прийти практически с самого начала изучения экономической теории. При этом важны как знания традиционных математических курсов (математический анализ, линейная алгебра, теория вероятностей), так и знания, необходимые непосредственно в практической экономике и экономических исследованиях (математическая и экономическая статистика, теория игр, эконометрика и др.).

Математика является не только орудием количественного расчета, но также методом точного исследования. Она служит средством предельно четкой и ясной формулировки экономических понятий и проблем.

Ф.Энгельс в своё время  заметил, что "лишь дифференциальное исчисление даёт естествознанию возможность изображать математически не только состояния, но и процессы: движение". Поэтому целью моей работы является выяснить, каков экономический смысл производной, какие новые возможности для экономических исследований открывает дифференциальное исчисление, а также исследовать применение производной при решении различных видов задач по экономической теории.

Экономические задачи достаточно сложны, и чтобы облегчить решения  данных задач, существует такое понятие, как «производная». В своей работе я попыталась объяснить и доказать, что производная действительно помогает решать различные экономические задачи. Особый интерес у меня вызвали такие разделы, как:

  • Предельный анализ в экономике. Это совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений.
  • Исследование производственных функций в экономике (задачи). А именно различные производственные задачи.

Решение поставленных задач, очевидно, невозможно без рассмотрения теории дифференцирования функции и понятия предельных издержек производства, которые также изложены в моей работе.

Итогом работы стало  практическое использование полученных знаний для решения конкретной, самостоятельно сформулированной экономической задачи.

Очень часто при решении  экономических задач возникает  необходимость принять решение  на основе исследования и анализа  функций спроса, предложения, издержек, прибыли и т.д. При этом удобно пользоваться дифференциальным исчислением.

Если спросить экономиста “Что такое производная?”, то он ответит: «маржинализм». Слово «маржинализм» охватывает целый комплекс понятий в современной экономической науке.

В ХIХ в. в области экономической  теории произошло событие, которое  впоследствии привело к подлинному перевороту в методах экономического поведения людей или фирм, изменило характер научно-экономического мышления. Классическая наука обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход к анализу экономических процессов и явлений. Во второй половине ХIХ в. была сформулирована теория маржинализма. Классиками этой теории стали экономисты австрийской школы К. Менгер (1840-1921), Ф. фон Визер (1851-1926), Е. фон Бём-Баверк (1851-1914), а также английский экономист У.С. Джевонс (1835-1882).

"Marginal" в переводе с английского  языка означает "находящийся на  самом краю", "предельный", "граничный". К предельным величинам в экономике относятся: предельные издержки, предельный доход, предельная полезность, предельная производительность, предельная склонность к потреблению и т.д. Понятие предельных величин позволило создать совершенно новый инструмент исследования и описания экономических явлений, посредством которого стало возможно решать научные проблемы, прежде не решённые или решённые неудовлетворительно. Все эти величины самым тесным образом связаны с понятием производной. Предельные величины характеризуют не состояние (как суммарная или средняя величины), а процесс, изменение экономического объекта. Следовательно, производная выступает как скорость изменения некоторого экономического объекта (процесса) с течением времени или относительно другого исследуемого фактора.

Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

То есть, эти задачи решаются только с помощью математики, а именно с помощью производной.

В чем же состоит экономический смысл производной? Если фирма наращивает объем использования только некоторых или только одного из факторов производства, то прирост выпуска, приносимый дополнительными объемами этих факторов, в конце концов, начнет снижаться. Очень важной производственной задачей является умение определить при каком объеме производства удельные затраты будут минимальными и до каких пределов можно расширять производство.

Предельные или пограничные  величины характеризуют процесс, изменение  экономического объекта. Следовательно, производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

Надо заметить, что экономика  не всегда позволяет использовать предельные величины в силу прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно отвлечься от дискретности и эффективно использовать предельные величины.

Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда (x- прирост продукции, а (y - приращение издержек производства.

В этом случае производная [pic] выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции [pic], где MC – предельные издержки (marginal costs); TC – общие издержки (total costs); Q - количество.

Геометрическая интерпретация  предельных издержек - это тангенс  угла наклона касательной к кривой в данной точке.

Аналогичным образом  могут быть определены и многие другие экономические величины, имеющие предельный характер, а производительность труда есть производная объема продукции по времени.

Пусть функция u = u(t) выражает количество произведенной продукции u за время t. Необходимо найти производительность труда в момент tο.

За период времени  от tο до tο + Δt количество произведенной  продукции изменится от значения uο = u(tο) до значения uο + Δu = u(tο + Δt). Тогда  средняя производительность труда за этот период времени: Zср=Δu :Δt.

Очевидно, что производительность труда в момент tο можно определить как предельное значение средней  производительности за период времени  от tο до tο + Δt при Δt → 0, т.е. z = lim Zср = lim Δu/Δt = u'(t) при Δt→0

Таким образом, производительность труда есть производная  объема произведенной продукции  по времени.

Или у = у(х) - функция, характеризующая, например, издержки производства, где x - количество выпускаемой продукции.

Задача. Выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью: π(q) = R(q) - C(q) = q² - 8q + 10

Решение: π'(q) = R'(q) - C'(q) = 2q - 8 = 0 → qextr = 4. При q < qextr = 4 → π'(q) < 0 и прибыль убывает При q > qextr = 4 → π'(q) > 0 и прибыль возрастает При q = 4 прибыль принимает минимальное значение. Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.

Эластичностью функции f(x) в точке x0 называют предел [pic] Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если |ED|>1, то спрос называется эластичным, если |ED|<1, то неэластичным. В случае ED=0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.

Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные(в случае функции нескольких переменных). В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.

Конечно, экономика не всегда позволяет использовать предельные величины в силу неделимости многих экономических расчетов, а также прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно эффективно использовать предельные величины.

В результате проведенного исследования можно сделать следующие  выводы:

  1. Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул.
  2. При помощи производной можно значительно расширить круг рассматриваемых при решении задач функций.
  3. Экономический смысл производной состоит в следующем: производная выступает как скорость изменения некоторого экономического процесса с течением времени или относительно другого исследуемого фактора.
  4. Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.).
  5. Производная находит широкое приложение в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем (например, представляет интерес экономическая интерпретация теоремы Ферма, выпуклости функции и т. д.). Знание производной позволяет решать многочисленные задачи по экономической теории.

 

СПИСОК ЛИТЕРАТУРЫ

1. Воронов М. В., Мещерякова Г. П. Математика для студентов гуманитарных факультетов. - Ростов-на-Дону : Феникс, 2002.

2. Малыхин В. Л. Математика в экономике. - М. : ИНФРА-М, 2001.

3. Розен В. В. Математические модели принятия решений в экономике. - М.: Книжный дом «Университет». Высш. шк., 2002

4. Солодовников А. С., Бабайцев В. А., Браилов А. В. Математика в экономике. В 2-х ч. - М.: Финансы и статистика, 2001.

5. Иванов С.И.Экономика. Основы экономической теории. Учебник для 10-11кл - «Вита-Пресс», 1999.


Информация о работе Применение частных производных в экономике