Сущность и назначение экстраполяции как метода прогнозирования

Автор работы: Пользователь скрыл имя, 04 Декабря 2015 в 10:51, реферат

Описание работы

ЦельЮ настоящей работы является рассмотрение особенности экстраполяции. Для достижения цели работы необходимо решить следующие задачи:
1.Определить понятие экстраполяции.
2. Рассмотреть процедуру проведения экстраполяции.

Файлы: 1 файл

Методы экстраполяции.docx

— 36.36 Кб (Скачать файл)

5. Иногда при прогнозировании  можно экстраполировать авторегрессионную функцию уровней ряда. При этом методе изучаемый ряд динамики анализируют с точки зрения автокорреляции. Чем больше автокорреляция между уровнями ряда, тем больше оϲʜований для расчета будущих показателей на оϲʜове имеющихся. При этом автокорреляция должна быть исчислена для разных лагов между уровнями. Установив наличие автокорреляции между уровнями ряда (с определенным лагом), можно найти уравнение, выражающее эту автокорреляционную зависимость, и, пользуясь им, экстраполировать ряд.

Данный список не является исчерпывающим, приведены лишь простейшие методы экстраполяции.

Однако хорошо известно, что те или иные «предсказания» статистики иногда не только не подтверждаются, но прямо противоположны действительному ходу изменения изучаемых показателей. Это доказывает, что прогнозирование, основанное только на обработке данных наблюдения, слишком рискованно, если оно не учитывает множества взаимосвязанных фактов и моментов, которые способны изменить тенденцию развития в будущем.

Огромное значение при экстраполяции имеет продолжительность базисного ряда динамики и сроков прогнозирования.

Практика прогнозирования динамики социально-экономических явлений показывает, что при экстраполяции следует брать те субпериоды базисного ряда, которые составляют определенный этап в развитии изучаемого явления в конкретных исторических условиях.

Прогнозы могут строиться на длительный период – долгосрочные прогнозы и на небольшие отрезки времени – краткосрочные прогнозы. Установление сроков прогнозирования зависит от задачи исследования. Но следует иметь в виду, что чем короче сроки упреждения прогноза, тем надежнее результаты экстраполяции. Применение методов экстраполяции зависит от изменений в базисном ряду динамики и предопределяется постановкой задачи исследования. При долгосрочном прогнозе (на 5 – 10 лет) следует исходить из динамики изучаемого показателя. Для краткосрочных же прогнозов более важно исследовать влияние факторов, определяющих изучаемый показатель.

Экстраполяция в рядах динамики носит не только приближенный, но и условный характер. Это обусловлено распространением на ряды динамики положений корреляционно-регрессионного анализа выборочных совокупностей. Эти вопросы в теории статистики разработаны недостаточно. Поэтому применение методов экстраполяции в рядах динамики не является самоцелью. При разработке прогнозов социально-экономических явлений привлекается дополнительная информация, на основе которой в полученные методом экстраполяции количественные оценки вносятся соответствующие коррективы.

Экономическое прогнозирование невозможно без хорошего знания изучаемого явления и владения различными методами обработки динамических рядов, которые в каждом отдельном случае помогли бы обнаружить общую закономерность изменения, периодичность в повышении или снижении уровней (если она имеет место), случайные колебания, автокорреляцию и корреляцию между отдельными рядами.

При анализе рядов динамики иногда приходится прибегать к определению некоторых неизвестных уровней внутри данного ряда динамики, т. е. к интерполяции .

Как и экстраполяция, интерполяция может производится на основе среднего абсолютного прироста, среднего темпа роста, а также с помощью аналитического выравнивания. При интерполяции предполагается, что ни выявленная тенденция, ни ее характер не претерпели существенных изменений в том промежутке времени, уровень (уровни) которого нам неизвестен.  

 

    1. Экстраполяционные методы прогнозирования 

 

Методы экстраполяции тенденций являются, пожалуй, самыми распространенными и наиболее разработанными среди всей совокупности методов прогнозирования. Использование экстраполяции в прогнозировании имеет в своей основе предположение о том, что рассматриваемый процесс изменения переменной представляет собой сочетание двух составляющих—регулярной и случайной:

Считается, что регулярная составляющая f(a, х) представляет собой гладкую функцию от аргумента (в большинстве случаев— времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения прогноза. Эта составляющая называется также трендом, уровнем, детерминированной основой процесса, тенденцией. Под всеми этими терминами лежит интуитивное представление о какой-то очищенной от помех сущности анализируемого процесса. Интуитивное, потому что для большинства экономических, технических, природных процессов нельзя однозначно отделить тренд от случайной составляющей. Все зависит от того, какую цель преследует это разделение и с какой точностью его осуществлять.

Случайная составляющая n(х) обычно считается некоррелированным случайным процессом с нулевым математическим ожиданием. Ее оценки необходимы для дальнейшего определения точностных характеристик прогноза.

Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего в некотором смысле описания тренда и на определение прогнозных значений путем его экстраполяции. Методы экстраполяции во многом пересекаются с методами прогнозирования по регрессионным моделям. Иногда их различия сводятся лишь к различиям в терминологии, обозначениях или написании формул. Тем не менее сама по себе прогнозная экстраполяция имеет ряд специфических черт и приемов, позволяющих причислять ее к некоторому самостоятельному виду методов прогнозирования.

Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирования, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстраполирующей функции, так и на определение границ изменения ее параметров.  

 

    1. Предварительная обработка исходной информации в задачах прогнозной экстраполяции

 

Предварительная обработка исходного числового ряда направлена на решение следующих задач (всех или части из них): снизить влияние случайной составляющей в исходном числовом ряду, т. е. приблизить его к тренду; представить информацию, содержащуюся в числовом ряду, в таком виде, чтобы существенно снизить трудность математического описания тренда. Основными методами решения этих задач являются процедуры сглаживания и выравнивания статистического ряда.

Процедура сглаживания направлена на минимизацию случайных отклонений точек ряда от некоторой гладкой кривой предполагаемого тренда процесса. Наиболее распространен способ осреднения уровня по некоторой совокупности окружающих точек, причем эта операция перемещается вдоль ряда точек, в связи с чем обычно называется скользящая средняя. В самом простом варианте сглаживающая функция линейна и сглаживающая группа состоит из предыдущей и последующей точек, в более сложных — функция нелинейна и использует группу произвольного числа точек.

Сглаживание производится с помощью многочленов, приближающих по методу наименьших квадратов группы опытных точек. Наилучшее сглаживание получается для средних точек группы, поэтому желательно выбирать нечетное количество точек в сглаживаемой группе.

Сглаживание даже в простом линейном варианте является во многих случаях весьма эффективным средством выявления тренда при наложении на эмпирический числовой ряд случайных помех и ошибок измерения. Для рядов со значительной амплитудой помехи имеется возможность проводить многократное сглаживание исходного числового ряда. Число последовательных циклов сглаживания должно выбираться в зависимости от вида исходного ряда, от степени предполагаемой его зашумленности помехой, от цели, которую преследует сглаживание. Надо иметь при всём этом в виду, что эффективность этой процедуры быстро уменьшается (в большинстве случаев), так что целесообразно повторять ее от одного до трех раз.

Линейное сглаживание является достаточно грубой процедурой, выявляющей общий приблизительный вид тренда. Для более точного определения формы сглаженной кривой может применяться операция нелинейного сглаживания или взвешенные скользящие средние. В этом случае ординатам точек, входящих в скользящую группу, приписываются различные веса в зависимости от их расстояния от середины интервала сглаживания.

Если сглаживание направлено на первичную обработку числового ряда для исключения случайных колебаний и выявления тренда, то выравнивание служит целям более удобного представления исходного ряда, оставляя прежними его значения.

Наиболее общими приемами выравнивания являются логариф-мирование и замена переменных.

В случае если эмпирическая формула предполагается содержащей три параметра либо известно, что функция трехпараметрическая, иногда удается путем некоторых преобразований исключить один из параметров, а оставшиеся два привести к одной из формул выравнивания.

Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредственного приближенного определения параметров функции, аппроксимирующей исходный числовой ряд.  Зачастую именно так и используется этот метод в некоторых экстраполяционных прогнозах. Отметим, что возможность непосредственного его использования для определения параметров аппроксимирующей функции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.

В том случае, если вид функции нам неизвестен, выравнивание следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и приемов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.

Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результаты их подготавливают и облегчают процесс выбора аппроксимирующей функции в задачах прогностической экстраполяции.  В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:

1) Первая производная, или  абсолютная дифференциальная функция  роста.

2) Относительный дифференциальный  коэффициент, или лога-рифмическая производная,

3) Эластичность функции. 

Вывод:

1.Экстраполяция является  важным методом прогнозирования.

2. Экстраполяция - это метод  научного исследования, который  основан на распространении прошлых  и настоящих тенденций, закономерностей, связей на будущее развитие  объекта прогнозирования. Методы  экстраполяции наиболее распространенные  в группе формализованных. 

3.Цель методов экстраполяции  – показать, к какому состоянию  в будущем может прийти объект, если его развитие будет осуществляться  с той же скоростью или ускорением, что и в прошлом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Корреляционно-регрессионный анализ

 

 


Информация о работе Сущность и назначение экстраполяции как метода прогнозирования