Автор работы: Пользователь скрыл имя, 06 Декабря 2013 в 09:11, курсовая работа
Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм «Игры разума». Некоторые американские телевизионные шоу, например, «Friend or Foe», «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.
1. Введение. стр.3
2. Основые понятия теории игры стр.4
3. Представление игр стр. 7
4. Типы игр стр.9
5. Применение теории игр в экономике стр.14
6. Проблемы практического применения в управлении стр.21
7. Заключение стр.23
Список использованной литературы стр.24
А |
Б | |
А |
−1, 1 |
3, −3 |
Б |
0, 0 |
−2, 2 |
Игра с нулевой суммой |
Игры с нулевой суммой — особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо — числа означают платежи игрокам — и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.
Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме — это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.
Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Сюда также относятся го, шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война.
В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.
Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые — в экстенсивной.
Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.
В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го, манкала и другие.
Часто понятие полной информации путают с похожим — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.
Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.
Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами — «выиграл» или «проиграл» — ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств.
Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т.п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно — шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.
Это такие игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр — увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов.
5. ПРИМЕНЕНИЕ ТЕОРИИ ИГР В ЭКОНОМИКЕ
В качестве примеров здесь можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д.
· Инструментарий теории игр особенно целесообразно применять, когда между участниками процесса существуют важные зависимости в области платежей. Ситуация с возможными конкурентами приведена на рис. 2.
Квадранты 1 и 2 характеризуют ситуацию, когда реакция конкурентов не оказывает существенного влияния на платежи фирмы. Это происходит в тех случаях, когда у конкурента нет мотивации (поле 1) или возможности (поле 2) нанести “ответный удар”. Поэтому нет необходимости в детальном анализе стратегии мотивированных действий конкурентов.
Аналогичный вывод следует, хотя и по другой причине, и для ситуации, отражаемой квадрантом 3. Здесь реакция конкурентов могла бы изрядно воздействовать на фирму, но поскольку ее собственные действия не могут сильно повлиять на платежи конкурента, то и не следует опасаться его реакции. В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.
Лишь ситуация, показанная в квадранте 4 (возможность ответных шагов рыночных партнеров), требует использования положений теории игр. Однако здесь отражены лишь необходимые, но недостаточные условия, чтобы оправдать применение базы теории игр для борьбы с конкурентами. Бывают ситуации, когда одна стратегия безусловно доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль “первопроходца” оказывается столь значительной, что всем другим “игрокам” остается только быстрее активизировать инновационную деятельность.
· Тривиальным с позиций теории игр примером “доминирующей стратегии” является решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке (например, IВМ на рынке персональных компьютеров в начале 80-х годов). Другое предприятие, действующее, к примеру, на рынке периферийного оборудования для ЭВМ, обдумывает вопрос о проникновении на рынок персональных компьютеров с переналадкой своего производства. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Игровая ситуация с указанием платежей показана в виде дерева на рис.3.
Та же самая игровая ситуация может быть представлена и в нормальной форме (рис.4). Здесь обозначены два состояния – “вступление/дружественная реакция” и “невступление/ агрессивная реакция”. Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном – 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.
Подобное рациональное равновесие характерно для “частично усовершенствованной” игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор “лучшего” хода на последнем этапе игры, затем выбирается “лучший” ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.
Какую пользу могут извлечь
компании из анализа на базе теории
игр? Известен, например, случай столкновения
интересов компаний IВМ и Telex. В связи
с объявлением о
Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны.
Это свидетельствует, что
компаниям полезно в
Следующий пример связан с соперничеством компаний в области технологического лидерства. Исходной является ситуация, когда предприятие 1 ранее обладало технологическим превосходством, но в настоящее время располагает меньшими финансовыми ресурсами для научных исследований и разработок (НИР), чем его конкурент. Оба предприятия должны решить вопрос, попытаться ли с помощью крупных капиталовложений добиться доминирующего положения на мировом рынке в соответствующей технологической области. Если оба конкурента вложат в дело крупные средства, то перспективы на успех у предприятия 1 будут лучше, хотя оно и понесет большие финансовые расходы (как и предприятие 2). На рис. 5 эта ситуация представлена платежами с отрицательными значениями.
Для предприятия 1 лучше всего было бы, если бы предприятие 2 отказалось от конкуренции. Его выгода в таком случае составила бы 3 (платежа). С большой вероятностью предприятие 2 выиграло бы соперничество, когда предприятие 1 приняло бы урезанную программу инвестиций, а предприятие 2 – более широкую. Это положение отражено в правом верхнем квадранте матрицы.
Анализ ситуации показывает, что равновесие наступает при высоких затратах на НИР предприятия 2 и низких предприятия 1. При любом другом раскладе у одного из конкурентов появляется резон отклониться от стратегической комбинации: так, для предприятия 1 предпочтителен сокращенный бюджет, если предприятие 2 откажется от участия в соперничестве; в то же время предприятию 2 известно, что при низких затратах конкурента ему выгодно инвестировать в НИР.
Предприятие, имеющее технологическое преимущество, может прибегнуть к анализу ситуации на базе теории игр, чтобы в конечном счете добиться оптимального для себя результата. С помощью определенного сигнала оно должно показать, что готово осуществить крупные затраты на НИР. Если такой сигнал не поступил, то для предприятия 2 ясно, что предприятие 1 выбирает вариант низких затрат.
О достоверности сигнала
должны свидетельствовать
С точки зрения теории игр подобные обязательства равнозначны изменению хода игры: ситуация одновременного принятия решений сменяется ситуацией последовательных ходов. Предприятие 1 твердо демонстрирует намерение пойти на крупные затраты, предприятие 2 регистрирует этот шаг и у него нет больше резона участвовать в соперничестве. Новое равновесие вытекает из расклада “неучастие предприятия 2” и “высокие затраты на НИР предприятия 1”. К числу известных областей применения методов теории игр следует отнести также ценовую стратегию, создание совместных предприятий, расчет времени разработки новой продукции.
Данная теория является базой подготовки рекомендаций для организационного строительства и проектирования систем стимулирования. Она полезна также для формирования и развития внутрифирменных культур.
Важный вклад в использование теории игр вносят экспериментальные работы. Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат импульсом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам целесообразно сотрудничать и добиваться лучших для себя результатов.
Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации “выигрыш/выигрыш”. Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.