Автор работы: Пользователь скрыл имя, 14 Мая 2012 в 17:35, творческая работа
У цветковых растений имеется ряд особенностей образования половых клеток и оплодотворения. Оплодотворению у них предшествует образование сильно редуцированного гаплоидного поколения - гаметофитов. После оплодотворения прорастание пыльцы цветковых растений начинается с разбухания зерна и образования пыльцевой трубки , которая прорывает спородерму в более тонком ее месте - так называемой апертуре. Кончик пыльцевой трубки выделяет специальные вещества, размягчающие ткани рыльца и столбика , в которые внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее переходят ядро вегетативной клетки и оба спермия .
У цветковых растений имеется ряд особенностей образования половых клеток и оплодотворения. Оплодотворению у них предшествует образование сильно редуцированного гаплоидного поколения - гаметофитов. После оплодотворения прорастание пыльцы цветковых растений начинается с разбухания зерна и образования пыльцевой трубки , которая прорывает спородерму в более тонком ее месте - так называемой апертуре. Кончик пыльцевой трубки выделяет специальные вещества, размягчающие ткани рыльца и столбика , в которые внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее переходят ядро вегетативной клетки и оба спермия . В огромном большинстве случаев пыльцевая трубка проникает в мегаспорангий ( нуцеллус ) через микропиле семязачатка , реже - иным образом. Проникнув в зародышевый мешок , пыльцевая трубка разрывается, и ее содержимое изливается внутрь. Один из спермиев сливается с яйцеклеткой, и образуется диплоидная зигота, дающая затем начало зародышу . Второй спермий сливается со вторичным ядром, располагающимся в центре зародышевого мешка , что приводит к образованию триплоидного ядра, развивающегося затем в триплоидный эндосперм. Весь этот процесс получил название двойного оплодотворения. Он был впервые описан в 1898 г. выдающимся русским цитологом и эмбриологом С.Г.Навашиным. Прочие клетки зародышевого мешка - антиподы и синергиды в оплодотворении не участвуют и довольно быстро разрушаются.
Как и у других высших растений , при мейозе у цветковых образуются споры . Микроспоры (мужские споры) образуются в пыльниках , из них формируются пыльцевые зерна (мужские гаметофиты). Зрелое пыльцевое зерно состоит из трех клеток - вегетативной (или клетки, пыльцевой трубки ) и двух спермиев (лишенные жгутика сперматозоиды). Мегаспоры (женские споры) формируются в семяпочках внутри завязи пестика .
Биологический смысл двойного оплодотворения весьма велик. В отличие от голосеменных , где довольно мощный гаплоидный эндосперм развивается независимо от процесса оплодотворения, у покрытосеменных триплоидный эндосперм образуется лишь в случае оплодотворения. С учетом гигантского числа поколений этим достигается существенная экономия энергетических ресурсов. Увеличение же уровня плоидности эндосперма до 3n, по-видимому, способствует более быстрому росту этой полиплоидной ткани по сравнению с диплоидными тканями спорофита .
Взаимодействие пыльцевой трубки гаметофита с тканями спорофита - сложный процесс, регулируемый химическими веществами. Так, выяснилось, что если промыть пыльцу дистиллированной водой, она теряет способность к прорастанию. Если сконцентрировать полученный раствор и обработать концентратом пыльцу, она вновь станет полноценной. После прорастания рост пыльцевой трубки контролируется тканями пестика. Например, у хлопчатника рост трубки до яйцеклетки занимает 12-18 ч, но уже через 6 ч можно установить, к какой семяпочке направляется пыльцевая трубка: в этой семяпочке начинается разрушение особой клетки - синергиды . Как растение направляет рост трубки в нужную сторону и каким образом синергида узнает о ее приближении, пока еще не известно.
Во многих случаях у цветковых растений существует "запрет" на самоопыление: спорофит "узнает" своего мужского гаметофита и не разрешает ему участвовать в оплодотворении. В некоторых случаях при этом собственная пыльца не прорастает на рыльце пестика. В большинстве же случаев рост пыльцевой трубки начинается, но затем останавливается и она не достигает яйцеклетки. Например, у первоцвета весеннего еще Ч.Дарвин обнаружил две формы цветков - длинностолбиковые (с длинным столбиком и короткими тычинками) и короткостолбиковые (столбик короткий, тычиночные нити длинные). У короткостолбиковых растений пыльца почти вдвое крупнее, а клетки сосочков рыльца мелкие. Все эти признаки контролируются группой тесно сцепленных генов.
Опыление эффективно только при переносе пыльцы с одной формы на другую. За распознавание своей пыльцы отвечают молекулы-рецепторы, представляющие собой сложные комплексы белков с углеводами. Показано, что растения дикой капусты , которые не вырабатывают в тканях рыльца молекул рецептора, могут самоопыляться. У нормальных растений рецепторы появляются на рыльце за день до открытия цветка. Если раскрыть бутон и нанести на него собственную пыльцу за два дня до распускания, то оплодотворение произойдет, а если за один день до распускания - то нет.
Интересно, что в некоторых случаях самонесовместимость пыльцы у растений определяется серией множественных аллелей одного гена, сходно с несовместимостью при пересадках тканей у животных. Эти аллели обозначаются буквой S, и число их в популяции может достигать десятков и даже сотен. Если, например, генотип производящего яйцеклетки растения - s1s2, а производящего пыльцу - s2s3, то прорастать при перекрестном опылении будут только 50% пылинок - те, что несут аллель s3. При наличии десятков аллелей большая часть пыльцы при перекрестном опылении нормально прорастает, а самоопыление полностью предотвращается.