Использование аэрокосмических методов в геологии

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 14:59, реферат

Описание работы

Аэрокосмические методы исследования с момента их появления в геологии всегда были и будут актуальны, особенно для России с её просторами, огромными расстояниями, неразвитой инфраструктурой. Необходимо также отметить, что площади известных горнорудных районов в геологическом отношении довольно хорошо изучены и обследованы. Поэтому здесь можно рассчитывать, главным образом, на выявление скрытых рудных объектов (глубоко залегающих и/или перекрытых рыхлыми отложениями).

Содержание работы

Введение 3
Глава 1. Исторический очерк 4
1.1. С чего начиналось применение аэрофотосъёмки в геологии 4
1.2. ДЗЗ 6
1.3. ГИС 8
Глава 2. Объекты изучения, цели и задачи аэрокосмических методов 10
Глава 3. Физические основы дистанционных исследований Глава 4. Современные средства исследований 18
4.1. Российская космическая система ДЗЗ 18
4.2. Цифровые системы съёмки 23
Глава 5. Связи с другими научными дисциплинами Заключение 29
Словарь основных терминов 30
Список использованной литературы 33

Файлы: 1 файл

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ В ГЕОЛОГИИ.doc

— 817.00 Кб (Скачать файл)

Зато в концепции  фигурируют две многоспутниковые системы  мониторинга землетрясений и  ЧС, а также лесопожарного мониторинга, эффективность которых еще предстоит доказать. Пока другие страны мира не спешат разворачивать аналогичные средства. Возможность уверенного прогнозирования землетрясений датчиками с орбиты предстоит еще довести от стадии экспериментов до серийных образцов, поэтому непонятно уверенное стремление Роскосмоса быстрее создать многоспутниковую систему из аппаратов с неотработанной технологией.

Наконец, для картографии  не обязательно запускать специализированный картографический космический комплекс, как предусмотрено Концепцией - сегодня только Индия вывела на орбиту аналогичный аппарат, и разумность подобного решения еще предстоит доказать.

За пределами Концепции  осталась и существующая до сих пор  в России несовершенная организационная  схема разработки и эксплуатации программ ДЗЗ. За рубежом для повышения ответственности разработчиков и создания совершенных по параметрам систем ДЗЗ практикуется разделение ответственности: космическое агентство (например, NASA или ESA) отвечает за разработку и запуск спутника, а организация-оператор (например, NOAA, USGS, EUMETSAT) принимает спутник к эксплуатации и отвечает за оперативную эксплуатацию системы. Организации-операторы несут ответственность также за формирование облика перспективных систем. В России исполнение всех функций взяло на себя агентство Роскосмос. Неизвестно, пойдет ли это на пользу делу - даже в двадцатилетней перспективе.

Реальность: анализ снимков "Ресурс-ДК"

А теперь о том, что  есть: первые изображения, переданные российским спутником дистанционного зондирования Земли "Ресурс-ДК", не только подтверждают работоспособность бортовых систем и целевой аппаратуры, но и наглядно демонстрируют масштабы успеха отечественных разработчиков, а также те трудности, которые им удалось преодолеть. Научный Центр оперативного мониторинга Земли представил первые изображения, полученные камерами российского спутника "Ресурс-ДК". Аппарат был выведен в космос 15 июня 2006 года ракетой-носителем "Союз-У". По данным фрагментам можно получить представление о характеристиках получаемой информации на начальном этапе летных испытаний. По завершении этапа летных испытаний и после ввода "Ресурса-ДК" в штатную эксплуатацию потребители получат возможность заказа информации.

Таблица 3. Тактико-технические  и целевые характеристики спутника "Ресурс-ДК" (данные НЦ ОМЗ)

Характеристика, параметр

Значение

Разрешение на местности  при съемке с высоты H=360 км в надире, м

 

В панхроматическом диапазоне

>=1,0

В узких спектральных диапазонах

до 3,0

Спектральные диапазоны, мкм:

Панхроматический диапазон

от 0,58 до 0,8

В узких спектральных диапазонах

от 0,5 до 0,6

от 0,6 до 0,7

от 0,7 до 0,8

Количество диапазонов, снимаемых одновременно

до 3

Полоса захвата с H=360 км (при съемке в надир), км

до 28

Скорость передачи данных по радиолинии, Мбит/с

150,300

Оперативность передачи информации, ч

 

При съемке в пределах радиовидимости ППИ

Реальный масштаб времени (РМВ)

При глобальном наблюдении с использованием бортового запоминающего  устройства при передачи информации на один ППИ

от РМВ до 13 ч

Максимальная суточная производительность, млн. кв. км

до 1,0

Протяженность маршрутов  съемки, км

от 15 до 2000

Наклонение орбиты, град

70

Срок активного существования  КА, год

3

Масса Ка, кг

6570

Рис. 3. Город Измир, Турция. Левое изображение - снимок "Ресурс-ДК", правое изображение - снимок QuickBird (Google Earth) (по данным НЦ ОМЗ)


Специалисты по системам приема спутниковой информации, анализируя первые изображения, в первую очередь подчеркивают их крайнюю важность для страны. Важность создания в России такой системы нельзя недооценивать - она представляет собой существенный шаг вперед по сравнению с космическими системами предыдущего поколения, без которого дальнейшее развитие систем мониторинга Земли из космоса невозможно. Заслуги разработчиков аппарата из самарского ЦСКБ "Прогресс" достойны высших оценок. Разумеется, от принципиально нового спутника нельзя требовать невозможного.

Отмечаются характерные особенности изображений, обусловленные спецификой камер аппарата - например, характерные разноцветные штрихи от движущихся автомобилей на синтезированном из цветного изображении (г. Измир), вызванные не одновременной съемкой различных каналов. Ряд признаков (в частности, эллиптичность цистерн на снимке) изображения аэродрома во Франкфурте, снятого с малым креном, могут говорить о том, что, вероятно, оно подверглось заметной геометрической коррекции. Но, тем не менее, представленные изображения наглядно демонстрируют главное - у России появился собственный аппарат дистанционного зондирования, способный стать основой для создания аппаратов, которые ни в чем не будут уступать даже лучшим мировым аналогам.

4.2. Цифровые системы съёмки

Из космических цифровых (сканерных) систем съёмки представляют интерес американские спутники серии LANDSAT, функционирующие с 1972 г. На спутниках LANDSAT устанавливали два типа цифровой аппаратуры: MSS (multispectral scanner) и TM (Thematic Mapper). MSS снимает 4 зоны спектра. Пространственное разрешение около 80 м, радиометрическое разрешение - 6 бит (64 градации яркости в каждой зоне спектра). Сканер TM имеет 7 зон съёмки. Пространственное разрешение 30 м, радиометрическое разрешение - 8 бит (256 градаций яркости в каждой зоне спектра). Площадь кадра LANDSAT 185x170 км, т.е 31 450 км2 (рис. 4).

Рис. 4. Снимок района устья р. Томи, сделанный со спутника Landsat-7 (разрешение 30м (http://picture1534/yandex.ru)


 

Американские метеоспутники NOAA запускаются с 1960 г. Их полярная орбита имеет наклонение 98,89 градусов, т.е. они в состоянии снимать практически  всю поверхность Земли, включая  полярные районы. Съёмки ведутся в 5 каналах, пространственное разрешение 1 100 м, полоса охвата 2 700 км.

Французская космическая  система SPOT функционирует с 1986 г. Пространственное разрешение 10 м в чёрно-белом панхроматическом диапазоне и 20 м в многозональном режиме (три диапазона). Размер кадра 60x60 км (рис. 5).

Рис. 5. Снимок района оз. Чёрного в Северной Хакасии и куэстовой гряды «Сундуки» (показана красным прямоугольником), сделанный со спутника SPOT (разрешение 10 м). (http://pict1004/mail.ru)


 

Индийские спутники IRS ведут  съёмку в 4 диапазонах с разрешением  около 20 м. Размер кадра 145 км.

Самое высокое пространственное разрешение в панхроматическом режиме на сегодняшний день имеют: корейский  спутник Kompsat-2 - 1 м (рис. 6), израильский спутник EROS-B1 - 70 см (рис. 7) и американские спутники Ikonos - 1 м (рис. 8), Quick Bird II - 61 см (рис. 9) и WorldView-1 - 47 см (рис. 10).

Рис. 6. Спутник Kompsat-2 (Респ. Корея), запущенный в 2006 г. (http://pict4/list.ru)


 

Рис. 7. Спутник EROS-B1 (Израиль), запущенный в апреле 2006 г. (http://dsc00653/ya.ru)

Рис. 8. Центральная часть г. Вашингтон (фрагмент космического снимка Ikonos с пространственным разрешением около 1 м). (www.spaceimaging.com)

Рис. 9. Спутник Quick Bird II (США), запущенный в октябре 2001 г. (www.spaceimging.com)


 

 

Рис. 10. Спутник WorldView-1 (США), запущенный в сентябре 2007 г. (www.spaceimaging.com)


 

В России работают цифровые системы низкого и среднего разрешения на базе ИСЗ серии «Метеор», а  также цифровые системы высокого разрешения на базе спутников серии  «Ресурс-О» и «Океан». Снимки со спутника «Метеор» распространяет НПО «Планета» (Федеральная служба России по гидрометеорологии и мониторингу окружающей среды). Пространственное разрешение этих снимков 700x1400 м, ширина полосы охвата 3 100 км.

Определённый интерес  в целях использования в ГИС представляют снимки со спутников серии «Ресурс-О» и «Океан». Эти спутники оборудованы сканерами МСУ-СК (5 диапазонов съёмки, пространственное разрешение 160 м) и МСУ-Э (три диапазона съёмки, пространственное разрешение 40-45 м) (рис. 1).

Радарные космические съёмки в России успешно вёл аппарат «Алмаз-1» в 1991-1992 гг. Пространственное разрешение на местности 10-15 м. Ширина полосы охвата 40-56 км.

Европейские спутники ERS-1 и ERS-2 имеют пространственное разрешение 26,3x30 м с полосой захвата около 100 км.

Японский спутник JERS-1 (FUYO-1) имеет пространственное разрешение 18 м с полосой захвата 75 км.

Канадский спутник RADARSAT обеспечивает пространственное разрешение 9 м с полосой захвата 45 км.

Существенное преимущество радарных систем дистанционного зондирования над остальными заключается в практически полном отсутствии влияния облачности на качество снимка.

 

5. СВЯЗИ С ДРУГИМИ  НАУЧНЫМИ ДИСЦИПЛИНАМИ

Возникновение и современное  развитие аэрометодов в геологии основано на широком использовании  при исследованиях поверхности земли достижений авиации, фотографии, фотограмметрии, геофизики, геоботаники и других отраслей наук. Во взаимодействии аэрокосмического зондирования с географическими науками наблюдается определённая двойственность. С одной стороны, аэрокосмические методы можно отнести к какой-либо конкретной науке, привлекающей их для исследования своего предмета. С другой стороны, теоретическое обобщение конкретных приложений способствует становлению аэрокосмического зондирования как самостоятельной дисциплины со своей логикой развития. С позиции этой дисциплины сферы других наук являются областью её практического применения.

Геология, геохимия, геофизика, геокриология, география, гидрология, океанология, геодезия, землеведении и многие другие науки, широко использующие космические методы и средства исследования. Например, в палеогеодинамике мы можем подтверждать теорию геотектоники плит, путём исследований из космоса.

ДЗЗ сейчас применяется во всех сферах нашей жизни: от глобальных до локальных исследований планеты.

 

 

 

                                                     ЗАКЛЮЧЕНИЕ

Выполненное изучение материалов различных источников значительно  повысило мои знания по данному вопросу. А также показало, что использование материалов космических съемок в совокупности с геоинформационными технологиями, и на начальных этапах и в процессе выполнения минералогических исследований и прогнозно-поисковых работ позволяет актуализировать архивную «бумажную» геолого-картографическую информацию, существенно уточнить и получить новые данные об особенностях геологического и в том числе глубинного строения площадей, значительно локализовать рудо перспективные площади.

Написание данной работы помогло улучшить навыки реферирования научной литературы, оформления.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СЛОВАРЬ ОСНОВНЫХ ТЕРМИНОВ

Аэровизуальное  наблюдение – визуальное наблюдение, проводимое непосредственно в полёте.

Аэрокосмическаяфотосъёмка – фотосъёмка, производимая из космоса.

Аэросъёмка – фотосъемка, производимая с воздуха.

Аэрофотоэлектронные методы – методы, в которых используют специальные приёмные системы и преобразователи, основанные на различных физических принципах.

Геоинформационные системы (также ГИС — географическая информационная система) — системы, предназначенные для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Другими словами, это инструменты, позволяющие пользователям искать, анализировать и редактировать цифровые карты, а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.

Дистанционное зондирование - это процесс, по средствам которого, мы можем наблюдать за объектом, группой объектов или явлений без непосредственного контакта с ними.

Радиолокационная  съёмка – съёмка, основанная на регистрации отраженных радиоимпульсах узкой направленности в микроволновом диапазоне.

Радиометрическая  разрешающая способность определяется количеством градаций значений цвета соответствующих переходу от яркости абсолютно "черного" к абсолютно "белому".

Иными словами под  радиометрической разрешающей способностью понимается - число градаций цвета

Данные (datum, data) — информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека.

Данные  дистанционного зондирования, ДДЗ (remote sensing data, remotely sensed data, remote surveying data, aerospace data) - данные о поверхности Земли, объектах, расположенных на ней или в её недрах, полученные в процессе съемок любыми неконтактными, т.е. дистанционными, методами. По сложившейся традиции к ДДЗ относят данные, полученные с помощью съемочной аппаратуры наземного, воздушного или космического базирования, позволяющей получать изображения в одном или нескольких участках электромагнитного спектра. Главные характеристики ДДЗ определяются числом и градациями спектральных диапазонов, геометрическими особенностями получаемого изображения (вид картографической проекции, распределение искажений), пространственным разрешением съёмки.

Картографические  проекции (map projection, projection) - математически определенный способ изображения поверхности земного шара или эллипсоида (или другой планеты) на плоскости. Все картографические проекции обладают теми или иными искажениями, возникающими при переходе от сферической поверхности к плоскости. По характеру искажений картографические проекции подразделяют на равноугольные, не имеющие искажений углов и направлений; равновеликие, не содержащие искажений площадей; равнопромежуточные, сохраняющие без искажений какое-либо одно направление (меридианы или параллели), и произвольные проекции, в которых в той или иной степени содержатся искажения углов и площадей.

Информация о работе Использование аэрокосмических методов в геологии